해당 라인의 처음으로 커서이동 : ctrl + a
해당 라인의 끝으로 커서이동 : ctrl + e


by 뭔일이여 2013. 3. 9. 02:30

마우스로 블럭단위 선택하기(Mac) : alt(option) + command + a


by 뭔일이여 2012. 8. 20. 18:02

테이블별 컬럼의 모든 정보보기

링크 - http://dev.mysql.com/doc/refman/5.0/en/show-columns.html

SHOW [FULL] COLUMNS {FROM | IN} tbl_name [{FROM | IN} db_name]
    [LIKE 'pattern' | WHERE expr]



by 뭔일이여 2012. 8. 20. 17:33

1. Primary

2. Secondary

3. Tertiary

4. Quaternary

5. Quinary

6. senary

7. septenary

8. octonary

9. nonary

10. denary

....

12. duodenary

.......

20. vigenary

by 뭔일이여 2012. 4. 19. 14:44

준비

안드로이드 SDK 와 Chrome브라우저가 PC에 설치되어있어야함.

- 모바일에도 Chrome브라우저가 설치돼있어야함(아이스크림 샌드위치에만 지원됨)


시작

1. 모바일에서 크롬브라우저를 실행하고 메뉴버튼 클릭해서 설정-개발자도구에서 USB웹 디버깅 사용에 체크

2. 시작-실행을 클릭해 cmd창을 열고 안드로이드 SDK가 설치된 경로로 가서 platform-tools 폴더로 들어간다.  그 후 다음 명령어를 실행한다.

adb forward tcp:9222 localabstract:chrome_devtools_remote

3. 데스크탑에서 크롬브라우저를 실행하고 주소창에 localhost:9222 를 입력한다. 그러면 모바일 크롬에서 떠있는 창이 썸네일이미지처럼 나오는데 그걸 클릭하면 크롬 개발자도구와 똑같은 웹페이지가 실행된다.

4. 디버깅 시작~


출처 - https://developers.google.com/chrome/mobile/docs/debugging?hl=ko-KR

by 뭔일이여 2012. 4. 18. 11:56

환경 - phonegap, jquery mobile, code igniter

phonegap에서 외부페이지(http://~)를 초기에 로드하도록 설정하고 해당 페이지의 링크를 클릭했을때

주소 끝에 / 가 들어가는 경우 prompt창이 뜨고 이동이 안되는 현상 발생

간단히 초기 로드할 주소의 끝부분에 / 를 없애면 해당현상 해결


by 뭔일이여 2012. 4. 3. 14:17
개요
모바일웹을 개발하면서 첨부파일 다운로드를 php의 header로 처리
모든기기에서 테스트하진 않았지만 안드로이드와 아이폰(팟)에서 테스트해본결과
아이폰계열에서는 이미지를 바로 보여준 후 오류가 발생
확인결과 header설정에서 Content-Disposition: attachment 일경우에 발생

증상
아이폰계얼에서 첨부파일 클릭 시 다운로드되지 않고 바로 보여주는데 이미지의 경우
브라우저에서 바로 보여주는 방식으로 처리됨
이미지를 보고난 후 뒤로가기를 눌러서 웹페이지로 이동하면 javascript에러가 발생
ajax통신 등 크로스도메인에서 주로 발생하는 SECURITY_ERR: DOM Exception 18 에러 발생
이 에러가 발생하면 브라우저를 닫고 다시 열기전까지는 계속 오류 발생

해결
첨부파일 다운로드 시 아이폰계열이고 이미지형식일 경우 header의 Content-Disposition 에
attachment 대신 inline 을 입력해주면 아이폰에서도 첨부파일이 보여진 후 에러발생하지 않음
이 방법으로 해결은 했지만 다른이유로 인해 SECURITY_~ 에러가 발생한다면 처리불가

by 뭔일이여 2012. 3. 22. 15:55

현재로써=X

현재,현재로서=O

 

'-로서'는 자격, 지위를, '-로써'는 수단, 자격을 나타냅니다. 흔히 시간을 나타내는 부사는 홀로 쓰이거나 '-로서'와 함께 쓰입니다. 예) 현재로써 (X) -> 현재, 현재로서 (O)

출 처 - 네이버 지식인

by 뭔일이여 2012. 2. 16. 16:00
스타일에서 클래스를 지정해서 사용할때 앞쪽 대상뒤의 클래스를 입력할 때 공백이 있을 경우와 없을경우의 차이가 있다.
공백이 있을경우는 해당 대상의 하위객체에 해당 클래스가 있으면 해당 스타일을 적용하라는 뜻이다.

<style type="text/css">
<!--
div .aa {
color: #ddd;
}
-->
</style>
<div class="aa">
no style
<span class="aa">color : #ddd</span>
</div>

위와같이 div 뒤에 공백이 있고 그 뒤에 .aa 라고 클래스를 지정했을 경우는 div 안에서 다른 태그에 aa라는
클래스를 지정했을 때만 컬러가 적용된다. 그래서 'no style' 텍스트는 aa 스타일이 적용되지 않고 보여진다.

하지만 스타일을 정의할때 div.aa 라고  적용을 했다면 'no style' 텍스트에도 스타일이 적용될것이다.
즉 div태그에 aa클래스가 선언되어있으면 해당 태그 하위 모든 텍스트에 똑같이 스타일을 적용한다는 뜻이다.


by 뭔일이여 2011. 11. 1. 10:28
by 뭔일이여 2011. 4. 28. 10:46

출처 :: http://blog.naearu.com/2982717/trackback/

 

- ASCII(str) : 해당 인저의 아스키 값을 반환한다. 문자열이 한글자 이상일 경우는 첫번째 문자에 해당하는 아스키 값을 반환한다.  문자열에 대해서는 0, NULL 에 대해서는 NULL 을 반환한다.
 : select ASCII('2');

- CONCAT(X,Y,...) : 해당 인자들을 연결한 
문자열을 반환한다. 인자중 하나가 NULL 일 경우는 NULL 을 반환한다.
 : select CONCAT('My', 'S', 'QL');

- LENGTH(str) : 문자열의 
길이를 반환한다.
- 예 : select LENGTH('text');

- OCTET_LENGTH(str) : 
LENGTH(str) 와 동일하다.

- CHARACTER_LENGTH(str) : LENGTH(str) 와 동일하다.

- LOCATE(substr,str) : 첫번째 인자에서 두번째 인자가 있는 위치를 반환한다. 없을경우 0 을 반환한다.
- 예 : select LOCATE('bar', 'foobarbar');

POSITION(substr IN str) : LOCATE(substr,str) 와 동일하다.

- LOCATE(substr,str,pos) : 
두번째 인자에서 세번째 인자의 자리수부터 검색을 하여 첫번째 인자가 발견되는 위치를 반환한다. 
- 예 : select LOCATE('bar', 'foobarbar',5);

- INSTR(str,substr) : 
LOCATE(substr,str) 와 동일한 기능을 하며, 차이점은 첫번째 인자와 두번째 인자가 바뀐것 뿐이다. 
- 예 : select INSTR('foobarbar', 'bar');

- LPAD(str,len,padstr) : 
첫번째 인자를 두번째 인자만큼의 길이로 변환한 문자열을 반환한다. 모자란 공간은 왼쪽에 세번째 인자로 채운다.
- 예 : select LPAD('hi',4,' ');

RPAD(str,len,padstr) : LPAD 와 반대로 오른쪽에 빈공간을 채운다.
- 예 : 
select RPAD('hi',5,'?');

- LEFT(str,len) : 첫번째 문자열에서 두번째 길이만큼만을 반환한다.
- 예 : select LEFT('foobarbar', 5);

- RIGHT(str,len) : LEFT(str,len) 
 동일하다. 차이점은 해당 길이만큼 오른쪽에서부터 반환한다.
- 예 : select 
RIGHT('foobarbar', 4);
select SUBSTRING('foobarbar' FROM 4);

- SUBSTRING(str,pos,len) : 첫번째 인자의 문자열에서 두번째 인자의 위치부터 세번째 인자의 길이만큼 반환한다.
- 예 : select 
SUBSTRING('Quadratically',5,6); 

- SUBSTRING(str FROM pos FOR len) : SUBSTRING(str,pos,len) 과 
동일하다. 

- MID(str,pos,len) : SUBSTRING(str,pos,len) 과 동일하다.

- SUBSTRING(str,pos) 
: 첫번째 인자의 문자열에서 두번째 인자로부터의 모든 문자열을 반환한다.
- 예 
: select SUBSTRING('Quadratically',5);

- SUBSTRING(str FROM pos) : SUBSTRING(str,pos) 와 
동일하다. 

- SUBSTRING_INDEX(str,delim,count) : 첫번째 인자인 문자열을 두번째 문자로 구분하여 
세번째 인자 수의 위치만큼 반환한다. 예를들어 select SUBSTRING_INDEX('www.mysql.com', '.', 2) 은 'www.mysql' 을 반환한다. 세번째 인자가 음수일경우는 반대로 오른쪽에서부터 검색하여 결과를 반환한다.
- 예 : select SUBSTRING_INDEX('www.mysql.com', '.', -2);

- LTRIM(str) : 
왼쪽에 있는 공백문자를 제거한 문자열을 반환한다.
- 예 : select LTRIM(' 
barbar'); 

- RTRIM(str) : 오른쪽에 있는 공백문자를 제거한 문자열을 반환한다.
- 예 : select RTRIM('barbar ');

- TRIM([[BOTH | LEADING 
| TRAILING] [remstr] FROM] str)
- 예 : select TRIM(' bar 
'); 
select TRIM(LEADING 'x' FROM 'xxxbarxxx');
select TRIM(BOTH 'x' FROM 'xxxbarxxx');
select TRIM(TRAILING 'xyz' FROM 'barxxyz');

- REPLACE(str,from_str,to_str) : 문자열은 치환한다.
- 예 : select REPLACE('www.mysql.com', 'www', 'ftp');

- REVERSE(str) : 
문자열을 뒤집는다. 예를들어, select REVERSE('abc') 은 'cba' 를 반환한다.

LCASE(str) : 문자열을 소문자로 변환한다.
- 예 : select LCASE('QUADRATICALLY');

- LOWER(str) : LCASE(str) 와 동일하다.

- UCASE(str) : 문자열을 
대문자로 변환한다.
- 예 : select UCASE('Hej');

- UPPER(str) : 
UCASE(str) 와 동일하다.

by 뭔일이여 2010. 9. 28. 10:14
VI에서 파일 인코딩을 변환하여 저장하거나 불러오려면 다음의 명령을 이용한다.

인코딩을 변환하여 불러오기.
:e ++enc=euc-kr

그리고 아래 명령으로 인코딩을 변환한 다음 저장한다.
:set fileencoding=utf-8

리눅스에서 파일의 인코딩을 확인하려면 file 명령어를 이용할 수 있다.
사용자 삽입 이미지











file 명령어에서 나타나는 내용은 /etc/magic 에 정의되어 있는 메타 정보를 이용한다.

by 뭔일이여 2010. 9. 17. 10:25

function xml2array($xml_obj) {
$sxi = new SimpleXmlIterator($xml_obj); // read from xml string
//$sxi = new SimpleXmlIterator($xml_obj, null, true); // read from filename
return sxiToArray($sxi);
}

function sxiToArray($sxi) {
$a = array();
for( $sxi->rewind(); $sxi->valid(); $sxi->next() ) {
if(!array_key_exists($sxi->key(), $a)) {
$a[$sxi->key()] = array();
} else if(!isset($a[$sxi->key()][0])) {
$exists_value = $a[$sxi->key()];
$a[$sxi->key()] = array();
$a[$sxi->key()][] = $exists_value;
}

if($sxi->hasChildren()) {
if(isset($a[$sxi->key()][0])) {
$a[$sxi->key()][] = sxiToArray($sxi->current());
} else {
$a[$sxi->key()] = sxiToArray($sxi->current());
}
} else {
if(isset($a[$sxi->key()][0])) {
$a[$sxi->key()][] = strval($sxi->current());
} else {
$a[$sxi->key()] = strval($sxi->current());
}
}
}
return $a;
}

사용상 편의를 위해 약간 수정했음

by 뭔일이여 2010. 7. 22. 10:37
사이트 제작 중 쿠키로 세션을 체크하는데 새로고침을 하면 계속 세션이 풀리는 현상이 발생했다.
크롬과 사파리에서만...
참고로 이 사이트는 codeigniter를 사용해서 제작했다.
그리고 http://도메인/그룹아이디 로 접속을 해서 그룹아이디를 쿠키로 굽고 그 쿠키를 가지고 로그인체크를 하는 구조를 가지고 있었다.

원인을 찾아보다 쿠키값을 찍어보니 favicon.ico라는 값이 찍히면서 쿠키값이 변경되는것이었다.
왜 저 값이 찍히는지 찾아보는데 아무리 소스를 들여봐도 해당 단어는 없었다.
그러다 codeigniter로 작성했다는걸 생각하면서 혹시 http://도메인/favicon.ico라는 접속이 이뤄지는것이 아닐까 라는 생각을 하게 되었다.
그래서 소스에서 저런 접속이 있으면 끝내도록 수정을 하니 이 문제가 사라졌다.
확인은 해봐야겠지만 원인은 밝혀졌다.

크롬과 사파리에서는 새로고침 시 
http://도메인/favicon.ico 에 접속을 해서 파비콘을 확인하는것이었다.

크롬과 사파리에서 파비콘을 확인하면서 접속했을때 favicon.ico를 그룹아이디로 인식하게 만들어버리기 때문이다.
이는 codeigniter를 사용하면서 서버에서 rewrite모듈을 사용했기때문이다.
즉 특수한 경우에 발생하는 현상인 것이다.

by 뭔일이여 2009. 6. 30. 17:53
정수 변경하기
10 나누기 2 는 5 나머지 0
5 나누기 2 는 2 나머지 1
2 나누기 2 는 1 나머지 0
1 나누기 2 는 0 나머지 1

제일 마지막에 나온 나머지 부터 위로 순서대로 나열 -> 1010

소수점 아래 수 변경하기
0.35 곱하기 2 는 0.7, 0.7 에서 정수 부분 0 을 뺌
0.7 곱하기 2 는 1.4, 1.4 에서 정수부분 1 을 뺌
0.4 곱하기 2 는 0.8, 0.8 에서 정수부분 0 을 뺌
0.8 곱하기 2 는 1.6, 1.6 에서 정수부분 1 을 뺌
0.6 곱하기 2 는 1.2, 1.2 에서 정수부분 1 을 뺌
0.2 곱하기 2 는 0.4, 0.4 에서 정수부분 0 을 뺌
0.4 곱하기 2 는 0.8, 0.8 에서 정수부분 0 을 뺌
0.8 곱하기 2 는 1.6, 1.6 에서 정수부분 1 을 뺌
0.6 곱하기 2 는 1.2, 1.2 에서 정수부분 1 을 뺌
0.2 곱하기 2 는 0.4, 0.4 에서 정수부분 0 을 뺌
0.4 곱하기 2 는 0.8, 0.8 에서 정수부분 0 을 뺌
0.8 곱하기 2 는 1.6, 1.6 에서 정수부분 1 을 뺌
................................
이후는 무한반복(2를 곱해서 나온수가 정수 1일경우 1을 뱉어내고 거기서 끝)
제일 위쪽부터 뺀 정수를 순서대로 나열 -> 0.010110011001100.....

소수점아래의 수는 이진수로 완벽하게 변경되지 않음

십진수 11.75 를 이진수로 변환
정수 변환
11 ÷ 2 = 5 나머지 1
5 ÷ 2 = 2 나머지 1
2 ÷ 2 = 1 나머지 0
1 ÷ 2 = 0 나머지 1
결과 : 1011(2진) = 11(10진)

소수점 아래 변환
0.75 × 2 = 1.50 => 1
0.50 × 2 = 1.00 => 1
결과 : 0.11(2진) => 0.75(10진)

11.75(10진) = 1011.11(2진)
by 뭔일이여 2009. 5. 13. 11:02

<?php
$string = floatVal(3300);
$float = 3000 * 1.1;
if($string === $float) {
    echo 'String '.$string.' 은 Float '.$float.' 와 같다';
} else {
    echo 'String '.$string.' 은 Float '.$float.' 와 다르다';
}
echo '<br />';
var_dump($string);
echo '<br />';
var_dump($float);
exit();
?>
////////////////결과값////////////////////
String 3300 은 Float 3300 와 다르다
float(3300)
float(3300)
///////////////////////////////////////////

<?php
$string = floatVal(5500);
$float = 5000 * 1.1;
if($string === $float) {
    echo 'String '.$string.' 은 Float '.$float.' 와 같다';
} else {
    echo 'String '.$string.' 은 Float '.$float.' 와 다르다';
}
echo '<br />';
var_dump($string);
echo '<br />';
var_dump($float);
exit();
?>
////////////////결과값////////////////////
String 5500 은 Float 5500 와 같다
float(5500)
float(5500)
///////////////////////////////////////////


위와같이 1.1에 3000을 곱하면 결과값은 같지만 비교연산을 해보면 다르다고 값이 나온다.
여러가지 방법으로 알아보니 이진연산을 하는 컴퓨터 프로그래밍이라서 그런것이라고 한다.
십진수의 소수점 아래 수는 완벽하게 이진수로 변경되지 않는다.
1.1을 이진수로 변환하면 1.000100010001... 이처럼 0001 이 반복된다.
그래서 곱하기를 하면 보이지는 않지만 미묘하게 다른 값이 나오는것이다.
근데 왜 3000을 곱하면 다르고 5000은 같을까? 제길...

꼼수로 해결을 하자면 소수점 자리만큼 10의 제곱을 곱한 후 계산하고 다시 곱한 수로 나누는 방법이 있다.
by 뭔일이여 2009. 5. 12. 17:28
preg_match의 pattern인자에서 modifier(구분자?)별 의미

i : 대소문자 구분안함
u : utf-8(자세한 사항은 확인 중)

utf-8에서 모든문자를 각각의 문자별로 자르기
예제)
<?php
$str = '한글 english どをウィ 中國 #&*§※☆★';
preg_match_all('/./u', $str, $match);
echo implode(',', $match[1]);
?>

결과값)
   한,글, ,e,n,g,l,i,s,h, ,ど,を,ウ,ィ, ,中,國, ,#,&,*,§,※,☆,★


by 뭔일이여 2009. 3. 2. 13:57
g 옵션이 있을경우와 없을경우의 차이

match : 전체 문자열을 반복적으로 검색해 해당하는 모든 결과를 배열로 뿌려줌
괄호로 묶은 부분은 찾은 문자에서 두번째값으로 지정되어야 하지만 match함수에서 g 옵션이 들어갈 경우
값이 할당되지 않는다. g 옵션이 없을 경우에는 처음 찾은 값만 리턴하기 때문에 두번째값으로 지정됨
ex)
<script type="text/javascript>
<!--
    var temp = "\"첫번째\" \"두번재\"\n\"세번째\"";
    var reg = /"([^"]+)"/igm;
    document.write(temp.match(reg));
    //결과값 : "첫번째","두번재","세번째"

    var reg = /"([^"]+)"/im;
    document.write(temp.match(reg));
    //결과값 : "첫번째",첫번째    <=== 따옴표가 없는 첫번째 는 괄호안의 검색 값임
//-->
</script>

exec : 문자열에서 해당하는 값을 배열로 뿌려줌
한번 검색 시 처음 해당하는 값만 뿌려줌
<script type="text/javascript">
<!--
    var temp = "\"첫번째\" \"두번재\"\n\"세번째\"";
    var reg = /"([^"]+)"/igm;
    document.write(reg.exec(temp));
    document.write(reg.exec(temp));
    //결과값 : "첫번째",첫번째"두번째",두번째
//-->
</script>

g 옵션이 있을경우 한번 검색하면 다음으로 포인터가 넘어가고 없을경우에는 첫번째 해당하는 값만 리턴해줌
전체 문자열에서 검색을 하기 위해선 다음과 같이하면 된다
<script type="text/javascript">
<!--
    var temp = "\"첫번째\" \"두번재\"\n\"세번째\"";
    var res = null;
    while((res = reg.exec(temp)) != null) {
        document.write(res+' - ');
    }
    //결과값 : "첫번째",첫번째 - "두번째",두번째 - "세번째",세번째 -
//-->
</script>
by 뭔일이여 2009. 1. 13. 13:16
사용자 삽입 이미지

by 뭔일이여 2008. 6. 18. 13:22

SUBJECT:   SED 명령어 사용법


o sed 스트림 편집기
  ed명령어와 grep명령어 기능의 일부를 합친 것이 sed(stream editor)명령어이다.


  sed명령어도 grep명령어와 같은 필터이지만 이 명령어는 화일을 수정할 수 있게 하는 반면 ed처럼 대화식
  처리는 불가능하다. sed 명령어는 1개 라인씩 입력 라인을 읽어들여 표준 출력에 출력한다.


 

  sed는 각 라인을 읽을 때마다 ed에서 사용하던 형식의 대치작업을 실행한다.


  일치하는 문자열이 있으면 그 문자열을 대치한 후 출력하고 일치하는 문자열이 없으면 그 라인은
  수정되지 않고 그대로 출력된다.

  이 sed 명령어가 ed보다 좋은 점은 라인들을 하나씩 읽고 , 수정하고, 출력하기 때문에 기억장치 안의
  버퍼를 사용하지 않는다는 것이다. 버퍼를 사용하지 않으면 화일의 크기에 제한 없이 작업을 할 수 있다.


  ed와 같이 버퍼를 사용하는 경우는 버퍼의 크기보다 큰 화일은 처리할 수 없으며 대개 버퍼의 크기는

  1MB정도이다. 따라서 sed는 아주 큰 화일을 처리할 때 주로 사용된다.

  sed 명령어를 호출하는 형식은 grep명령어와 같지만 완전한 형식의 대치 연산자를 사용한다는 점만이 다르다.


     # sed "s/hello/goodbye" in.file

  위의 명령어는 in.file이라는 화일에 있는 각 라인에서 첫번째 등장하는 hello라는 문자열을 goodbye로
  교체한 후 그 라인을 표준 출력에 출력한다.


     # echo "1234hello5678" | sed "s/hello/goodbye/"

  대치 명령어를 따옴표로 둘러싸야 올바로 사용할 수 있다. 여기서 문자열은 정규식으로 표현될수 도 있다.
  그외에도 sed명령어에는 여러 가지 연산자를 사용할 수 있다. 다음의 명령어를 사용하면 hello라는

  문자열을 포함하고 있는 모든 문자열을 삭제할 수 있다.

# sed "/hello/d" in.file


  위 명령어의 의미는 "hello라는 문자열을 포함하고 있는 라인을 찾아 그 라인을 삭제하라"는 것이다.

  이 sed 명령어는 다음 명령어와 같은 의미이다.


     # grep -v hello in.file


  라인을 전부 삭제하지 않고 hello라는 문자열만을 삭제하려면 다음 명령어를 사용하다.

     # sed "s/hello//" in.file


  ed와 같이 sed에서도 화일의 일부만을 대상으로 작업하는 경우는 라인의 범위를 지정할 수 있다.

     # sed "3,7s/hello//" in.file


  위의 명령어는 in.file이라는 화일의 라인3에서 7까지만을 대상으로 첫번째 hello를 삭제하고 화일의
  그 외의 부분은 변경시키지 않는다. 또한 다음과 같이 사용하면 라인 번호 대신 문맥을 범위로 
  지정할 수 있다.

     # sed "/hello/,/goodbye/s/bad/good/g" in.file


  위의 명령어는 hello라는 단어를 포함하고 있는 첫번째 라인부터 goodbye라는 단어를 포함하고 있는
  라인까지 검색하면서 bad라는 문자열을 모두 good으로 변경한다.

  또한 문자열 goodbye를 만난 이후에도 다시 다른 hello가 등장하면 다음 goodbye가 나올 때까지 대치
  작업은 반복된다.


sed명령어의 기능은 지금까지 우리가 살펴본 것보다 더 강력하다.


  sed명령어의 -f(file)선택자를 사용하면 명령어를 일일이 키보드에서 입력하지 않고 하나의 화일에
  기억시켜 놓고 사용할 수도 있다.


     # sed -f command.file in.file

  여러 개의 명령어를 연속적으로 자주 사용할 때 이 명령어 화일이 유용하게 사용된다.

  예를 들어 다음과 같은복수 개의 명령어가 화일에 기억되어 있는 경우는


     # vi command.file
       s/hello/goodbye
       s/good/bad

  다음과 같은 명령어를 입력하면


     # echo "1234hello5678" | sed -f command.file


  다음과 같이 출력된다.

     # echo "1234hello5678" | sed -f command.file
       1234badbye5678
  
o sed 기본
     # sed '' ljs --> cat ljs 와 동일


o sed 편집 명령어
      일상적인 sed 명령
    ---------------------------------------------------------------------------------------
     a\          다음 라인(들)을 적용될 라인들에 부가한다  (라인뒤)
     c\          적용될 라인들을 다음 라인(들)로 변경한다  (라인 대체)
     d           적용될 라인들을 삭제한다
     g           단지 첫번째의 것만이 아니라 라인의 모든 부합 패턴 대체가 적용 되게 한다 
     i\          다음 라인(들)을 적용될 라인들 위에 삽입한다  (라인앞)
     p           - n 옵션하에 있을지라도, 라인을 프린트한다
     q           명시된 라인에 도달할 때 중지한다
     r filename  filename을 판독한다. 내용을 출력에 부가한다
     s/old/new/  "old"를 "new"로 대체한다
     =           라인 번호를 프린트한다
     !command    라인이 선택되지 않는 경우 command를 적용한다.
    --------------------------------------------------------------------------------------


o 라인 명시
  sed명령은 두가지 방법을 사용한다. 첫 번째는 번지를 번호로 명시하는것이다.
  여러분은 특정한 라인을 가리키기 위해 단일 번호를 사용할 수 있다.


     # sed '3d' ljs  --> 세번째 라인을 삭제
  또는, 라인들의 범위를 가리키기 위해 콤마(,)로 분리된 두 번호들을 사용할 수 있다.
     # sed '2,4 s/e/#/' ljs  --> 대체 명령은 단지 2-4 라인들에만 적용된다. (단순 대체 명령은 라인에서
                                 첫번째 어커런스에만 적용된다는 점을 기억하라. 따라서 각 적용 라인의
                                 첫 번째 e만이 #로 대체된다)
     # sed -n '/kingdom/p' ljs  --> kingdom이 들어있는 line만 프린트
     # sed '/kingdom/p' ljs  --> 모든 line이 나타나고 그와 동시에 kingdom line이 중복해서 나타남
     # sed '[Pp]rincess/d' ljs  --> princess 또는 Princess를 포함하고 있는 라인들을 삭제함
     # sed '1,/fragrant/d' ljs  --> 라인 1로부터 fragrant를 포함하고 있는 첫번째 라인까지의 모든
                                    라인들을 삭제함


o sed 명령 하이라이트
     # more ljs
       I am a boy
       You are a girk
       He is a doctor
     # sed 'a\\
       Hey la la\! Doo de dah\!' ljs  --> 각 라인뒤에다 Hey la la!를 입력
        I am a boy
        Hey !
        You are a girk
        Hey !
        He is a doctor
        Hey !
     # sed 'a\\
       Oh\! good\\  --> \\을 사용함으로써 하나 이상의 라인들을 부가할 수 있다
       yeh' ljs
     # sed '3a\\
       Good Morning' ljs  --> 3 line뒤에다 내용 삽입
     # sed 'c\\
       Oh marvelous delight! sing to me! ' ljs  --> 기존의 라인들을 이것으로 대체시킴
       Oh marvelous delight! sing to me!
       Oh marvelous delight! sing to me!
       Oh marvelous delight! sing to me!

# sed '2q' ljs  = sed 2q ljs --> q명령은 편집기로 하여금 그것이 명시된 라인에 도착한 뒤
                                      중지하게 한다. 즉 2라인만 보여줌
     # sed -n '1s/a/#/gp' ljs  --> 전체적으로 바꿔줌

o sed의 패턴-부합
      패턴-부합에 대한 sed메타 문자
     -------------------------------------------------------------------
       메타 문자            작    용
     -------------------------------------------------------------------
       \              다음 문자의 특수한 의미를 부정한다
       ^              라인의 시작과 부합한다
       $              라인의 끝과 부합한다
       .              어떠한 단일 문자와도 부합한다
       [ ]            둘러싸인 문자들 중의 어느 하나와 부합한다
       [^...]         ...리스트에 없는 어떠한 문자와도 부합한다
       pat*           0 또는 그 이상의 pat 어커런스들과 부합한다
                      여기에서 pat는 단일문자 또는 [ ]패턴이다
       &              s 명령의 newpattern부분에서 사용되어 oldpattern
                      부분의 재 산출을 나타낸다
     -------------------------------------------------------------------

o 간략한 예
  ----------------------------------------------------------------------------------------
    명 령         결  과
  ----------------------------------------------------------------------------------------
   /Second/       Second를 포함하고 있는 어떠한 라인과도 부합한다.
   /^Second/      Second로 시작하는 어떠한 라인과도 부합한다.
   /^$/          공백라인, 즉 라인의 시작과 끝 사이에 아무것도 없는 라인과 부합한다.
                  이것은 공백 스페이스들로 된 라인과는 부합하지 않는바, 스페이스 자체가
                  문자이기 때문이다.
   /c.t/          cat, cot, 기타 등을 포함하고 있는 라인들과 부합한다. 이 패턴은 단어의
                  일부일 수 있음에 유의하라. 예를 들어, apricot와 acute도 부합된다.
   /./            적어도 한 문자를 포함하고 있는 라인들과 부합한다.
   /\./           피리어드를 포함하고 있는 라인들과 부합한다. \는 .의 특수한 의미를 부정
   /s[oa]p/       sop또는 sap와는 부합하지만 sip 또는 sup와는 부합하지 않는다.
   /s[ ^oa]p/     sip또는 sup와는 부합하지만 sop또는 sap와는 부합하지 않는다.
   s/cow/s&s/     cow를 scows로 대체한다.
   /co*t/         * --> 어떠한 수
  ----------------------------------------------------------------------------------------

 간단한 sed 해법
     # sed '/^$/d' ljs  --> 모든 공백 라인 제거
     # sed '/^ *$/d' --> space로 만들어진 공백까지 제거 (조심! ^와 *사이에 공백이 있어야 한다)
     # sed 'a\\
       ' ljs   --> 각 line마다 공백라인 추가
     # sed '/^#/d' ljs  --> 첫번째 열에 #을 가진 라인 제거
     # sed 's/^/     /' ljs  --> 각 line의 시작을 5 space로 대체

o 다중 명령
     # sed 's/Bob/Robert/g\
            s/Pat/Patricia/g' ljs  --> sh을 사용하는 경우에는 \을 생략하라
     # sed 's/cat/dog/g\
            s/dog/pigs/g' ljs  --> 먼저 모든 cats를 dogs로 변환한 다음에 모든 dogs를 pigs로 변환한다.
     # sed 's/Bob/Robert/g\
            s/Pat[^a-z]/Patricia/g' ljs  --> ^a-z은 a에서 z까지의 문자들이 아닌 모든 문자를
                                             의미한다는 점을 상기하라

o 태그
  위에서 Pat!와 같은 것이 발견될때 !를 포함한 전체 문자열이 Patricia로 대체되므로 !가 소실된다.
  우리는 !를 유지하면서 Pat를 대체하는 방법을 필요로 한다. 우리는 이것을 태그(tag)를 사용하여
  수행할 수 있다. 패턴의 일부를 "태그"하려면, 그것을 좌측에는 \(로 우측에는 \)로 둘러싸라.
  그 다음에, 명령의 newpattern부분에서, 여러분은 그렇게 둘러싸인 패턴의 첫 번째 것은 \1로,
  두번째 것은 \2 등으로 인용할 수 있다. 이 방법을 사용하면 다음의 명령이 부여된다.
      # sed 's/\(Pat\)\([^a-z]\)/\1ricia\2/g' ljs

o 쉘 스크립트와 sed
      # vi twospace
        sed 'a\\
        ' $*   --> $*은 모든 인자들을 나타냄
      # twospace ljs | pr | lpr
   위 예는 sed가 어떻게 하여 UNIX 프로그래밍과 쉘 스크립트에 적합한가를 나타낸다.

출처 : Tong - schick님의 linux통

by 뭔일이여 2007. 7. 24. 16:47

RIA

RIA ( Rich Internet Application, 리치 인터넷 에플리케이션 )

RIA ( Rich Internet Application, 이하 RIA )란 기존의 웹 어플리케이션 기술이 가진 평면적인 표현과 순차적인 프로세스를 다이나믹한 사용자 인터페이스와 데이터 베이스의 연동을 통해 저렴한 비용으로 하나의 인터페이스에서 모든 프로세스가 처리 가능 하도록 해주는 기술을 말한다.

이 용어는 현재 Adobe와 통합된 Macromedia의 2003년 백서에서 처음 사용된 용어로 특정 제푸을 뜻하는 것이 아니라 풍부한 GUI ( Graphic User interface ) 를 제공하는 애플리케이션을 정의하는 단어이다. 이후에 Flash 기반 어플리케이션과 솔루션에 RIA라는 개념으로 광범위하게 사용되었으며 현재는 기존 웹 애플리케이션보다 풍부하고 향상된 유저 인터페이스를 제공하는 웹 애플리케이션을 지칭하는데 범용적으로 사용되고 있다.


차세대 애플리케이션의 이동, RIA

과거 메인 프레임이 주를 이루던 시대, 메인 프레임에서 구축된 애플리케이션은 모든 데이터 처리가 중앙 서버에서 이루어지고 사용자는 터미널에서 까만 화면에 커서가 깜빡이는 화면을 볼 뿐이었다. 이후 클라이언트/서버 방식이 보편화 되면서 윈도우와 같은 운영 체계 상에서 GUI 를 사용하게 되었다. 그러나 이 같은 방식은 클라이언트 프로그램 배포에 엄청난 시간과 비용이 소모되기 때문에 웹 기반 애플리케이션으로 다시 이동하게 된다.

웹 애플리케이션은 클라이언트로 브라우저만 있으면 실행 가능하므로 기존 방식에 비해 접근성이 크게 향상되었으나 UI 부분에서 취약하다는 점이 약점을 가지고 있다. 이 때문에 배포의 효율성을 유지하면서 풍부한 GUI를 제공하기 위한 리치 인터넷 애플리케이션 ( RIA ) 혹은 X-인터넷 기술이 각광받고 있다. 이는 기존의 웹 애플리케이션의 표현 한계를 극복하기 위한 개념으로 풍부한 UI를 지향한다는 점에서 근본적으로 RIA와 X-인터넷의 개념은 같다. 그러나 X-인터넷은 차트나 그리드 위주인데 반해, 웹 2.0의 RIA 개념이 접목된 솔루션에서는 다양한 멀티미디어를 활용해 더욱 직관적이고 풍부한 UI를 구현할 수 있다. 웹 2.0 시대를 이끌어갈 핵심 키워드로 RIA가 주목받는 이유이다.


중요성이 증가하는 RIA

RIA는 기존 HTML 보다 역동적인 화면 연출이 가능할 뿐 아니라 다단계 페이지가 아닌 원 페이지에서 모든 정보 제공이 가능해 사용자 편의성 중심의 새로운 웹 기술이다. 웹 애플리케이션에 대한 사용자의 요구와 기대는 기술 발전 속도보다 앞서 나아가 기존 기술 역량을 넘어서고 있기 떄문에 앞으로는 RIA 구현의 중요성이 점차 증가할 것으로 예상된다. 이러한 RIA를 구현하는 데는 초기 개념에서부터 가장 오래 사용되어온 Adobe에서 출시한 두 가지 소프트웨어가 필요하다. 그것은 바로 Flash와 Flex이다. 이미 Flash의 기능과 기술은 개발자들을 통해 많이 알려져 있으므로 Flex의 기능에 대해 알아보겠다.


Adobe Flex

Adobe의 ' Flex 2 ' 는 웹 2.0을 구현하기 위한 솔루션 중 최적의 솔루션으로 주목 받고 있다. Flex 2는 벡터 그래픽과 리치 미디어 등을 활용해 기존 웹과는 차별화 되는 프레젠테이션 단에서의 화려한 화면 구성을 가능하게 한다. 특히, 웹 2.0이 강조하는 풍부하고 직관적인 사용자 인터페이스를 구현할 수 있다. Flex 2는 비주얼 레이아웃 및 차트 기능이 강화된 ' Flex Builder 2 ', 무료로 제공되는 개발자 도구인 ' Flex 2 SDK ',  'Flex Data Service 2 ' , ' Flex Charting 2 ' 등으로 구성되어 있다. Flex 2 SDK 는 자바의 JDK 롸 유사한 개발자 툴로 Flex 프레임웍과 컴파일러 등으로 구성된 Flex 개발의 기본 툴이며 누구나 웹에서 다운받아 에디터에서 직접 MXML 코드를 작성해 실제로 개발할 수 있다. ( Flex SDK 2.0 다운로드 http://labs.adobe.com ). Flex Builder2는 Flex 개발 툴이고 이클립스 기반의 위지웍 방식이므로 직접 코드를 작성하는 것보다 훨씬 편하고 생산성 있게 개발이 가능하다. Flex Data Service 2 는 Flex 1.5 까지 Flex 프레젠테이션 서버라고 불리던 것에 메시지 서비스 ( JMS )를 추가해 서버와 클라이언트 ( Flex 애플리캐이션 ) 가 데이터 통신을 지원하는 서버 기술이다. Flex Charting 2 는 1.5 버전까지 제공되는 Flex 차트 컴포넌트의 확장 버전이다. 이전 버전에서는 서버 및 개발 도구가 통합되어 제공되어 소규모 기업이나 개인 개발자가 활용하기에 부담이 컸으나 Flex 2 버전부터는 필요 솔루션만 따로 구입할 수 있어 Flex 개발을 위한 문턱이 대폭 낮아졌다.


Adobe Flex 장점

Flex는 우선 Flash 기반 기술이기 때문에 플랫폼과 브라우저에 관계없이 구동이 가능하다. 최근 운영체제와 브라우저에 관계없이 구동이 가능하다. 최근 운영체제와 브라우저가 점점 다양화되며 모든 운영체제와 모든 브라우저에서 동일하게 표시되고 작동하는 애플리케이션을 개발하는 것은 상당히 어려운 일이나, Flex를 활용하면 크로스 플랫폼에서 가능한 애플리케이션을 개발할 수 있다. 또한 웹, 컴퓨터, 휴대폰이나 개인용 디바이스에서도 활용이 가능하며 Flash에서 가능한 모든 효과를 구현할 수 있고 데이터 및 코드 중심 접근법으로 Flash 보다 유지 보수나 개발 생산성이 뛰어나다.

Flex가 가지는 또 다른 강점은 확장성이 매우 뛰어나다는 점이다. 새로운 UI 컴포넌트가 필요하거나 기존 컴포넌트에서 일부분 UI를 변경해야 할 때, 최근 일부 개발된 RIA 솔루션은 개발자나 디자이너가 직접 컴포넌트를 확장할 수 없어 따로 솔루션 벤더에게 컴포넌트 개발/수정을 요청해야 하지만 Flex는 UI 컴포넌트의 액션스크립트 클래스를 제공하고 있고 이 소스가 오픈되어 있어 새로운 UI 컴포넌트를 개발자가 직접 구현할 수 있으며 MXML 태그로 컴포넌트를 정의해 재사용할 수 있다. Flex는 프레임워크의 모든 API 를 제공하고 있다. 또한 Flex Buiklder른 전 세계에서 가장 영향력이 큰 개발툴인 이클립스 ( Eclipse ) 기반이므로 기존 이클립스의 장점 및 안정적인 플랫폼을 갖추고 있으며 기존 이클립스 개발자가 쉽게 적응할 수 있다.

** RIA를 한마디로 표현한다면 ' 한 페이지에 구현 가능한 웹 애플리케이션 ' 이라고 할 수 있다. 사용자들이 온라인에서 물건을 구매하거나 티켓을 예매할 때 많은 페이지 이동을 필요로 했지만 이제 사용자는 한 페이지 안에서 모든 기능을 이용할 수 있게 되었다. 자신이 하고자 하는 모든 것을 한 페이지 안에서 모두 할 수 있다는 것이 바로 RIA의 강점이자 매력이다.

현재 RIA ( Rich Internet Application ) 기술은 Adobd의 기존 Flash와 새로운 Flex를 이용한 방법이 가장 대중적인 방법이라고 할 수 있다. 이러한 두가지 방식으로 구현된 RIA 애플리케이션은 이미 외국의 경우 2002년부터 개발 구축됐다. 당시 구축된 Flash RIA 시스템이 아직도 사용중인 곳이 있는데 바로 브로드무어 ( BroadMoor, www.broadmoor.com ) 호펠의 원 스크린 예약 시스템이다. 이 사이트의 예약 시스템은 RIA가 적용된 첫 번째 사례였으며 2002년 TravleClick( www.travelclick.net ) 에 의해 제작되었다. 브로드무어 사이트의 예약 시스템은 플래시와 콜드퓨전으로 만들어졌으며 이 시스템은 기존의 복잡했던 예매 페이지를 플래시의 화려한 그래픽 사용자 인터페이스를 이용해 사용자가 페이지 이동 없이 한 페이지로 구현한 것이었다. 이것은 그 당시까지의 여러 페이지를 거쳐 시스템을 구현하던 웹 사용자 인터페이스의 새로운 획을 긋는 커다란 사건이었다. 그 이후 해가 바뀌면서 수많은 RIA가 적용된 사이트들이 개발 되었다. 더불어 Flex를 이용해 구축된 RIA 사이트들도 등장하기 시작했다. 또한 Flex와 Flash가 병행되기 시작했으며 RIA가 적용되는 분야 또한 넓어지고 있다. 현재 외국은 RIA 시스템은 온라인 커스터마이징 툴과 데이터 서비스 툴로 사용하고 있다.

예를 들어 미국의 할레이 데이비슨 사이트의 경우 사용자가 모터사이클을 고른 뒤 자신이 필요로 하는 옵션을 직접 선택해 장착해서 모터 사이클이 어떻게 변할지 미리 볼 수 도 있다.
할리데이비슨 ( www.harley-davidson.com )  사용자가 직접 액세서리 등을 선택해 추가하거나 교체해 볼 수 있다.

셔윈-윌리엄스 ( www.sherwin-williams.com.com ) 셔먼 윌리엄스는 페인트 회사로 사용자가 자신이 바꿀 거실, 주방등을 선택해 RIA 환경에서 다양한 색상을 선택해 적용해 볼수있는 환경을 제공한다.

Home Locater ( www.asfusion.com/apps/homelocator ) 직관적인 부동산 검색 애플리케이션이다. 사용자들은 지도를 클릭하는 것으로 간단하게 검색할 수 있으며 가격, 침실 수 그리고 다른 주요 사항 별로 필터링이 가능하다.

현재 국내에서는 2005년부터 극장의 티켓 예매 프로세스와 일부 쇼핑몰 등 선도 기업들을 중심으로 RIA 가 채택되어 개발되고 있다. 작년에 이어 올해도 온라인 쇼핑몰과 자동차 업체를 중심으로 많은 기업들이 RIA 를 채택할 움직임을 보이고 있다.


국내 RIA 프로젝트

* 태평양 아모레의 RIA ( Flex )
* 인터파크 RIA 영화예매 시스템
* etv & 엠플 ( www.cjmall.com/etv & www.MPLE.com ) 의 구매 시스템

CJ 시스템즈의 좋은 콘서트 ( 2006 ) : 공연 RIA 예매 시스템 구축 - 실제 공연 브로셔를 보듯이 책장을 넘기는 애니메이션을 통해 사용자가 원하는 공연을 선택하고 해당 공연장의 좌석 선택까지 완벽하게 구현

디자인그룹 인터내셔널 ( 2006 ) - 디자인그룹 웹 사이트 리뉴얼 : PHP로 제작된 관리자 페이지에서 등록된 데이터를 XML 형태로 전송 받아 Flash에서 유동적으로 표현되도록 구현

한글과 컴퓨터 ( 2006 ) - 크래팟, 스타일록 라이브러리 페이지 구축 : 선택한 장르에 해당되는 스타일록 데이터를 XML 형태로 전송 받아 마우스 휠을 이용한 회전 내비게이션 형태로 구현

CJ시스템즈 ( 2006 ) 프리머스 시네마 플래시 예매 시스템 리뉴얼 : 사용자가 원하는 영화와 날짜, 시간, 좌석 등을 선택할 때마다 서버와 XML 형태로 된 데이터를 연동하여 예매 프로세스가 진행되도록 구현함

삼성카드 ( 2006 ) 삼성카드 중도상환 RIA : 카드사 최초로 Flash로 구현된 중도상환 결제 시스템이며 서버와의 데이터 연동은 XML을 이용해서 구현.

CJ 시스템즈 ( 2006 ) : CGV 현장 발권시스템 키오스크 좌석 모듈 제작 : 온라인이 아닌 오프라인의 키오스크용 영화 예매 좌석 선택 플래시 모듈로 실제 데이터 연동은 온라인 예매 시스템과 동일한 형태로 구현됨.

SK커뮤니케이션즈 ( 2005 ) NATE.com Cizle 예매 시스템 개발 [ RIA & Application Design ] : 영화 먼저, 극장 먼저, 날짜 먼저, 당일 영화까지 총 네가지 선택 방식에 따라 예매진행 방식이 변동되도록 구현된 예매 시스템으로 데이터 연동은 XML 형태로 제작

CJ시스템즈 ( 2006 ) CGV 사이트 예매 시스템 리뉴얼 : 웹 사이트의 어느 페이지에서든지 쉽게 접근할 수있는 레이어 형태로 제작된 최초의 예매 시스템으로 실제 영화관의 좌석을 사용자가 직접 선택할 수 있는 좌석 선택 예매 시스템도 최초로 구현

이렇게 RIA 는 웹과 함께 데스크탑까지 확장을 하고 있으며 머지않아 웹 제작의 일반 기술로 채용될 것으로 보인다. 웹 애플리케이션에 대한 사용자의 요구와 기대는 현재 개발되는 기술 발전 속도보다 더 빠르게 증가하는 것 또한 RIA의 활용을 부추기는 요소로 작용하고 있다.

마케팅에는 캐즘 ( Chasm ) 현상이라는 것이 있는데 혁신성을 중시하는 소비자가 중심이 되는 초기 시장과 실용성을 중시하는 소비자가 중심이 되는 주류 시장 사이에 일시적으로 수요가 정체하거나 후퇴하는 단절 현상을 말한다. 이는 일반 사용자들의 고정 관념으로 인해 혁신적인 기술이 빠르게 확산되지 못하는 것을 의미한다. 이러한 현상처럼 Adobe의 Flash와 Flex로 대변되던 RIA의 환경이 다소 주춤하고 있는 사이 RIA를 구현할 수 있는 많은 기술들이 속속 등장하고 있다. AJAX / DHTML이 자바스크립트와 XML 기술을 이용해 웹 2.0에서 많은 주목을 받고 있으며 현재 많은 업체에 의해 AJAX 를 쉽게 개발할 수 있도록 툴 킷들이 공개되고 있다.

또한 마이크로소프트의 WPF 는 차세대 벡터 방식의 그래픽 환경으로 WPF/E를 활용해 RIA를 구현할 수 있다. 여기에 엑티브엑스, 자바애플릿 기술을 들이 약진하고 있다. 더불어 전세계 온라인 검색의 최강자로 군림하고 있는 구글이 에이작스 ( AJAX ) 를 활용하면서 빠른 속도로 Ajax 기술이 전파되고 있다. 이러한 모든 것이 RIA ( Rich Internet Application ) 이며 때문에 RIA 를 처음 도입한 Adobe의 영향력이 위협받고 있다. 하지만 사용자에게 중요한 것은 웹이 되었던 데스크탑이 되었던 모든 어플리케이션에 RIA가 활용될 것이란 사실이다.

RIA 는 사용자에게는 사용에 있어서의 편리함이며 기업에게는 수익이 보장되어야 한다. 방식이야 어찌되었든 개발자들은 다양한 툴을 이용해 개발을 할 것이다. 이제 얼마 지나지 않아 우리는 쇼핑몰을 이용하면서 자신과 동일한 모습을 한 캐릭터에게 직접 옷을 입혀본 뒤 제품 구매를 구매하고, 자신이 차량에 직접 탑승한 모습을 보고 물건을 구매하게 될 것이다. 이제 여러분이 상상하는 세상이 이제 웹에서 펼쳐 질것이다. 이러한 서비스의 중심이 RIA가 있는 것이다.

spotlight 1. " 새로운 사용자 경험 RIA"  W.E.B 매거진 중에서
by 뭔일이여 2007. 5. 9. 18:01

<script type="text/javascript">
<!--
function random_number(num, to) {
    var randNum = Math.random();
    if(isNaN(num) || to != undefined) {
        if(to != undefined) {
            var num_ = new Array();
            for(var i=num, ii=0; i<=to; i++) {
                num_[ii] = i;
                ii++;
            }
        }
        try {
            var numLen = num_.length-1;
            var randRet = Math.round(randNum*numLen);
            var retVal = num_[randRet];
            if(retVal == undefined) { return ' "'+randRet+'" '; }
            return retVal;//+' "'+num_+'" ';
        } catch(e) {
            return false;
        }
    } else {
        var retVal = Math.round(randNum*num);
        if(retVal == undefined) { return ' "'+randNum+'" '; }
        return retVal;//+' "'+randNum+'" ';
    }
}

/*
randLoad
  obj
  type
  ext
  num
  to
  randNum
  objSrc
  ext
  objLen
  w, h
 
  debug
*/
randomLoad = function(randObj, type, ext) {
    this.obj  = randObj;
    this.type = type;
    this.ext  = ext;

    this.link = new Array();
}
randomLoad.prototype.init = function() {
    if(this.num != undefined) {
        if(this.to != undefined) { this.randNum = random_number(this.num, this.to); }
        else { this.randNum = random_number(this.num); }
        this.objSrc = this.obj+this.randNum+this.ext;
    } else {
        try {
            this.objLen = this.obj.length-1;
            this.randNum = random_number(this.objLen);
            this.objSrc = this.obj[this.randNum]+this.ext;
        } catch(e) {
            alert("입력값이 잘못되었습니다.\n다시 설정해 주세요.");
            return false;
        }
    }
    if(this.prepath != undefined) { this.objSrc = this.prepath+this.objSrc; }
    if(this.debug == true) { document.test.num.value = 'rand:'+this.randNum+' from:'+this.num+' to:'+this.to; }
    this.load();
}
randomLoad.prototype.load = function() {
    if(this.type == 'image') {
        var src = '<img src="'+this.objSrc+'" border="0"';
        if(this.w != undefined) { src += ' width="'+this.w+'"'; }
        if(this.h != undefined) { src += ' width="'+this.h+'"'; }
        src += ' />';
    } else if(this.type == 'swf' || this.type == 'movie') {
        var w = this.w != undefined ? this.w : false;
        var h = this.h != undefined ? this.h : false;
        var src = object_load(this.type, this.objSrc+this.ext, w, h, false);
    }
    if(this.link.length>1) { src = '<a href="'+this.link[this.randNum]+'">'+src+'</a>'; }
    if(this.target != undefined) { el_id(this.target).innerHTML = src; }
    else { document.write(src); }
}
//-->
</script>

by 뭔일이여 2007. 5. 9. 13:05

~해 를 적용했을때 적합하면 돼
나름해석 : 어떤 상황이 완료됐을 때, 했을 때(예 - 됐다)
예) 안돼요(O), 안해요(O)
     안되요(X), 안하요(X)


~하다 를 적용했을때 적합하면 되
나름해석 : 어떤 상황이 진행될때, 하고 있을 때(예 - 하다)
예) 저장하다(O), 저장되다(O)
     저장해다(X), 저장돼다(X)

이상한 점이 있다면 코멘트로 남겨주세요.
by 뭔일이여 2007. 5. 2. 11:14
경험한 사실을 회상하는 것이 아니라면 '-데(요)'를 쓰지 않습니다.

누가 어떻게 했데?(X)
어딜 갔데?(X)

누가 어떻게 했대?(O)
어딜 갔대?(0)

누가누가 머머 했대요?(0)
누가누가 머머 했데요?(X)

-------------------------------------------------------

'대(요)'나 '데(요)'는 발음이 비슷하여 혼동하기 쉽지만, 그 쓰임이 다르므로 잘못 표기하면 뜻이 달라집니다.

'-대요'는 '-다고 해요'가 줄어든 말입니다. '듣거나 본 사실을 인용하여 서술할 때' 또는 '그 사실 여부를 물을 때' 쓰는 말입니다.

예) 워낙 바빠서 서울 한 번 올라오기가 힘들대요.
그럼 왜 휴학을 했대요?

반면, '-데요'는 해요체의 종결어미로 말하는 이가 자신이 경험한 사실을 회상하여 일러주거나 그렇게 생각하게 되었을 때 쓰는 말로 '-더군요'의 뜻입니다.

예) 선생들이 학생들은 어떡하냐며 눈물을 글썽이데요.
고향에 가니까 옛날 생각이 나데요.

듣거나 본 사실을 인용하여 서술함을 뜻하는 것이라면 '공부했대요, 말했대요'로 씁니다.

(우리말배움터)
퍼온곳 - 네이버 지식인
by 뭔일이여 2007. 5. 2. 11:02

-----------------------------------------------------------------------------
This file contains a concatenation of the PCRE man pages, converted to plain
text format for ease of searching with a text editor, or for use on systems
that do not have a man page processor. The small individual files that give
synopses of each function in the library have not been included. There are
separate text files for the pcregrep and pcretest commands.
-----------------------------------------------------------------------------


PCRE(3)                                                                PCRE(3)


NAME
       PCRE - Perl-compatible regular expressions


INTRODUCTION

       The  PCRE  library is a set of functions that implement regular expres-
       sion pattern matching using the same syntax and semantics as Perl, with
       just  a  few differences. (Certain features that appeared in Python and
       PCRE before they appeared in Perl are also available using  the  Python
       syntax.)

       The  current  implementation of PCRE (release 7.x) corresponds approxi-
       mately with Perl 5.10, including support for UTF-8 encoded strings  and
       Unicode general category properties. However, UTF-8 and Unicode support
       has to be explicitly enabled; it is not the default. The Unicode tables
       correspond to Unicode release 5.0.0.

       In  addition to the Perl-compatible matching function, PCRE contains an
       alternative matching function that matches the same  compiled  patterns
       in  a different way. In certain circumstances, the alternative function
       has some advantages. For a discussion of the two  matching  algorithms,
       see the pcrematching page.

       PCRE  is  written  in C and released as a C library. A number of people
       have written wrappers and interfaces of various kinds.  In  particular,
       Google  Inc.   have  provided  a comprehensive C++ wrapper. This is now
       included as part of the PCRE distribution. The pcrecpp page has details
       of  this  interface.  Other  people's contributions can be found in the
       Contrib directory at the primary FTP site, which is:

       ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre

       Details of exactly which Perl regular expression features are  and  are
       not supported by PCRE are given in separate documents. See the pcrepat-
       tern and pcrecompat pages.

       Some features of PCRE can be included, excluded, or  changed  when  the
       library  is  built.  The pcre_config() function makes it possible for a
       client to discover which features are  available.  The  features  them-
       selves  are described in the pcrebuild page. Documentation about build-
       ing PCRE for various operating systems can be found in the README  file
       in the source distribution.

       The  library  contains  a number of undocumented internal functions and
       data tables that are used by more than one  of  the  exported  external
       functions,  but  which  are  not  intended for use by external callers.
       Their names all begin with "_pcre_", which hopefully will  not  provoke
       any name clashes. In some environments, it is possible to control which
       external symbols are exported when a shared library is  built,  and  in
       these cases the undocumented symbols are not exported.


USER DOCUMENTATION

       The  user  documentation  for PCRE comprises a number of different sec-
       tions. In the "man" format, each of these is a separate "man page".  In
       the  HTML  format, each is a separate page, linked from the index page.
       In the plain text format, all the sections are concatenated,  for  ease
       of searching. The sections are as follows:

         pcre              this document
         pcre-config       show PCRE installation configuration information
         pcreapi           details of PCRE's native C API
         pcrebuild         options for building PCRE
         pcrecallout       details of the callout feature
         pcrecompat        discussion of Perl compatibility
         pcrecpp           details of the C++ wrapper
         pcregrep          description of the pcregrep command
         pcrematching      discussion of the two matching algorithms
         pcrepartial       details of the partial matching facility
         pcrepattern       syntax and semantics of supported
                             regular expressions
         pcreperform       discussion of performance issues
         pcreposix         the POSIX-compatible C API
         pcreprecompile    details of saving and re-using precompiled patterns
         pcresample        discussion of the sample program
         pcrestack         discussion of stack usage
         pcretest          description of the pcretest testing command

       In addition, in the "man" and HTML formats, there is a short  page  for
       each C library function, listing its arguments and results.


LIMITATIONS

       There  are some size limitations in PCRE but it is hoped that they will
       never in practice be relevant.

       The maximum length of a compiled pattern is 65539 (sic) bytes  if  PCRE
       is compiled with the default internal linkage size of 2. If you want to
       process regular expressions that are truly enormous,  you  can  compile
       PCRE  with  an  internal linkage size of 3 or 4 (see the README file in
       the source distribution and the pcrebuild documentation  for  details).
       In  these  cases the limit is substantially larger.  However, the speed
       of execution is slower.

       All values in repeating quantifiers must be less than 65536. The  maxi-
       mum  compiled  length  of  subpattern  with an explicit repeat count is
       30000 bytes. The maximum number of capturing subpatterns is 65535.

       There is no limit to the number of parenthesized subpatterns, but there
       can be no more than 65535 capturing subpatterns.

       The maximum length of name for a named subpattern is 32 characters, and
       the maximum number of named subpatterns is 10000.

       The maximum length of a subject string is the largest  positive  number
       that  an integer variable can hold. However, when using the traditional
       matching function, PCRE uses recursion to handle subpatterns and indef-
       inite  repetition.  This means that the available stack space may limit
       the size of a subject string that can be processed by certain patterns.
       For a discussion of stack issues, see the pcrestack documentation.


UTF-8 AND UNICODE PROPERTY SUPPORT

       From  release  3.3,  PCRE  has  had  some support for character strings
       encoded in the UTF-8 format. For release 4.0 this was greatly  extended
       to  cover  most common requirements, and in release 5.0 additional sup-
       port for Unicode general category properties was added.

       In order process UTF-8 strings, you must build PCRE  to  include  UTF-8
       support  in  the  code,  and, in addition, you must call pcre_compile()
       with the PCRE_UTF8 option flag. When you do this, both the pattern  and
       any  subject  strings  that are matched against it are treated as UTF-8
       strings instead of just strings of bytes.

       If you compile PCRE with UTF-8 support, but do not use it at run  time,
       the  library will be a bit bigger, but the additional run time overhead
       is limited to testing the PCRE_UTF8 flag occasionally, so should not be
       very big.

       If PCRE is built with Unicode character property support (which implies
       UTF-8 support), the escape sequences \p{..}, \P{..}, and  \X  are  sup-
       ported.  The available properties that can be tested are limited to the
       general category properties such as Lu for an upper case letter  or  Nd
       for  a  decimal number, the Unicode script names such as Arabic or Han,
       and the derived properties Any and L&. A full  list  is  given  in  the
       pcrepattern documentation. Only the short names for properties are sup-
       ported. For example, \p{L} matches a letter. Its Perl synonym,  \p{Let-
       ter},  is  not  supported.   Furthermore,  in Perl, many properties may
       optionally be prefixed by "Is", for compatibility with Perl  5.6.  PCRE
       does not support this.

       The following comments apply when PCRE is running in UTF-8 mode:

       1.  When you set the PCRE_UTF8 flag, the strings passed as patterns and
       subjects are checked for validity on entry to the  relevant  functions.
       If an invalid UTF-8 string is passed, an error return is given. In some
       situations, you may already know  that  your  strings  are  valid,  and
       therefore want to skip these checks in order to improve performance. If
       you set the PCRE_NO_UTF8_CHECK flag at compile time  or  at  run  time,
       PCRE  assumes  that  the  pattern or subject it is given (respectively)
       contains only valid UTF-8 codes. In this case, it does not diagnose  an
       invalid  UTF-8 string. If you pass an invalid UTF-8 string to PCRE when
       PCRE_NO_UTF8_CHECK is set, the results are undefined. Your program  may
       crash.

       2.  An  unbraced  hexadecimal  escape sequence (such as \xb3) matches a
       two-byte UTF-8 character if the value is greater than 127.

       3. Octal numbers up to \777 are recognized, and  match  two-byte  UTF-8
       characters for values greater than \177.

       4.  Repeat quantifiers apply to complete UTF-8 characters, not to indi-
       vidual bytes, for example: \x{100}{3}.

       5. The dot metacharacter matches one UTF-8 character instead of a  sin-
       gle byte.

       6.  The  escape sequence \C can be used to match a single byte in UTF-8
       mode, but its use can lead to some strange effects.  This  facility  is
       not available in the alternative matching function, pcre_dfa_exec().

       7.  The  character escapes \b, \B, \d, \D, \s, \S, \w, and \W correctly
       test characters of any code value, but the characters that PCRE  recog-
       nizes  as  digits,  spaces,  or  word characters remain the same set as
       before, all with values less than 256. This remains true even when PCRE
       includes  Unicode  property support, because to do otherwise would slow
       down PCRE in many common cases. If you really want to test for a  wider
       sense  of,  say,  "digit",  you must use Unicode property tests such as
       \p{Nd}.

       8. Similarly, characters that match the POSIX named  character  classes
       are all low-valued characters.

       9.  Case-insensitive  matching  applies only to characters whose values
       are less than 128, unless PCRE is built with Unicode property  support.
       Even  when  Unicode  property support is available, PCRE still uses its
       own character tables when checking the case of  low-valued  characters,
       so  as not to degrade performance.  The Unicode property information is
       used only for characters with higher values. Even when Unicode property
       support is available, PCRE supports case-insensitive matching only when
       there is a one-to-one mapping between a letter's  cases.  There  are  a
       small  number  of  many-to-one  mappings in Unicode; these are not sup-
       ported by PCRE.


AUTHOR

       Philip Hazel
       University Computing Service
       Cambridge CB2 3QH, England.

       Putting an actual email address here seems to have been a spam  magnet,
       so  I've  taken  it away. If you want to email me, use my two initials,
       followed by the two digits 10, at the domain cam.ac.uk.


REVISION

       Last updated: 18 April 2007
       Copyright (c) 1997-2007 University of Cambridge.
------------------------------------------------------------------------------


PCREBUILD(3)                                                      PCREBUILD(3)


NAME
       PCRE - Perl-compatible regular expressions


PCRE BUILD-TIME OPTIONS

       This  document  describes  the  optional  features  of PCRE that can be
       selected when the library is compiled. They are all selected, or  dese-
       lected, by providing options to the configure script that is run before
       the make command. The complete list of  options  for  configure  (which
       includes  the  standard  ones such as the selection of the installation
       directory) can be obtained by running

         ./configure --help

       The following sections include  descriptions  of  options  whose  names
       begin with --enable or --disable. These settings specify changes to the
       defaults for the configure command. Because of the way  that  configure
       works,  --enable  and --disable always come in pairs, so the complemen-
       tary option always exists as well, but as it specifies the default,  it
       is not described.


C++ SUPPORT

       By default, the configure script will search for a C++ compiler and C++
       header files. If it finds them, it automatically builds the C++ wrapper
       library for PCRE. You can disable this by adding

         --disable-cpp

       to the configure command.


UTF-8 SUPPORT

       To build PCRE with support for UTF-8 character strings, add

         --enable-utf8

       to  the  configure  command.  Of  itself, this does not make PCRE treat
       strings as UTF-8. As well as compiling PCRE with this option, you  also
       have  have to set the PCRE_UTF8 option when you call the pcre_compile()
       function.


UNICODE CHARACTER PROPERTY SUPPORT

       UTF-8 support allows PCRE to process character values greater than  255
       in  the  strings that it handles. On its own, however, it does not pro-
       vide any facilities for accessing the properties of such characters. If
       you  want  to  be able to use the pattern escapes \P, \p, and \X, which
       refer to Unicode character properties, you must add

         --enable-unicode-properties

       to the configure command. This implies UTF-8 support, even if you  have
       not explicitly requested it.

       Including  Unicode  property  support  adds around 30K of tables to the
       PCRE library. Only the general category properties such as  Lu  and  Nd
       are supported. Details are given in the pcrepattern documentation.


CODE VALUE OF NEWLINE

       By  default,  PCRE interprets character 10 (linefeed, LF) as indicating
       the end of a line. This is the normal newline  character  on  Unix-like
       systems. You can compile PCRE to use character 13 (carriage return, CR)
       instead, by adding

         --enable-newline-is-cr

       to the  configure  command.  There  is  also  a  --enable-newline-is-lf
       option, which explicitly specifies linefeed as the newline character.

       Alternatively, you can specify that line endings are to be indicated by
       the two character sequence CRLF. If you want this, add

         --enable-newline-is-crlf

       to the configure command. There is a fourth option, specified by

         --enable-newline-is-anycrlf

       which causes PCRE to recognize any of the three sequences  CR,  LF,  or
       CRLF as indicating a line ending. Finally, a fifth option, specified by

         --enable-newline-is-any

       causes PCRE to recognize any Unicode newline sequence.

       Whatever line ending convention is selected when PCRE is built  can  be
       overridden  when  the library functions are called. At build time it is
       conventional to use the standard for your operating system.


BUILDING SHARED AND STATIC LIBRARIES

       The PCRE building process uses libtool to build both shared and  static
       Unix  libraries by default. You can suppress one of these by adding one
       of

         --disable-shared
         --disable-static

       to the configure command, as required.


POSIX MALLOC USAGE

       When PCRE is called through the POSIX interface (see the pcreposix doc-
       umentation),  additional  working  storage  is required for holding the
       pointers to capturing substrings, because PCRE requires three  integers
       per  substring,  whereas  the POSIX interface provides only two. If the
       number of expected substrings is small, the wrapper function uses space
       on the stack, because this is faster than using malloc() for each call.
       The default threshold above which the stack is no longer used is 10; it
       can be changed by adding a setting such as

         --with-posix-malloc-threshold=20

       to the configure command.


HANDLING VERY LARGE PATTERNS

       Within  a  compiled  pattern,  offset values are used to point from one
       part to another (for example, from an opening parenthesis to an  alter-
       nation  metacharacter).  By default, two-byte values are used for these
       offsets, leading to a maximum size for a  compiled  pattern  of  around
       64K.  This  is sufficient to handle all but the most gigantic patterns.
       Nevertheless, some people do want to process enormous patterns,  so  it
       is  possible  to compile PCRE to use three-byte or four-byte offsets by
       adding a setting such as

         --with-link-size=3

       to the configure command. The value given must be 2,  3,  or  4.  Using
       longer  offsets slows down the operation of PCRE because it has to load
       additional bytes when handling them.


AVOIDING EXCESSIVE STACK USAGE

       When matching with the pcre_exec() function, PCRE implements backtrack-
       ing  by  making recursive calls to an internal function called match().
       In environments where the size of the stack is limited,  this  can  se-
       verely  limit  PCRE's operation. (The Unix environment does not usually
       suffer from this problem, but it may sometimes be necessary to increase
       the  maximum  stack size.  There is a discussion in the pcrestack docu-
       mentation.) An alternative approach to recursion that uses memory  from
       the  heap  to remember data, instead of using recursive function calls,
       has been implemented to work round the problem of limited  stack  size.
       If you want to build a version of PCRE that works this way, add

         --disable-stack-for-recursion

       to  the  configure  command. With this configuration, PCRE will use the
       pcre_stack_malloc and pcre_stack_free variables to call memory  manage-
       ment  functions.  Separate  functions are provided because the usage is
       very predictable: the block sizes requested are always  the  same,  and
       the  blocks  are always freed in reverse order. A calling program might
       be able to implement optimized functions that perform better  than  the
       standard  malloc()  and  free()  functions.  PCRE  runs noticeably more
       slowly when built in this way. This option affects only the pcre_exec()
       function; it is not relevant for the the pcre_dfa_exec() function.


LIMITING PCRE RESOURCE USAGE

       Internally,  PCRE has a function called match(), which it calls repeat-
       edly  (sometimes  recursively)  when  matching  a  pattern   with   the
       pcre_exec()  function.  By controlling the maximum number of times this
       function may be called during a single matching operation, a limit  can
       be  placed  on  the resources used by a single call to pcre_exec(). The
       limit can be changed at run time, as described in the pcreapi  documen-
       tation.  The default is 10 million, but this can be changed by adding a
       setting such as

         --with-match-limit=500000

       to  the  configure  command.  This  setting  has  no  effect   on   the
       pcre_dfa_exec() matching function.

       In  some  environments  it is desirable to limit the depth of recursive
       calls of match() more strictly than the total number of calls, in order
       to  restrict  the maximum amount of stack (or heap, if --disable-stack-
       for-recursion is specified) that is used. A second limit controls this;
       it  defaults  to  the  value  that is set for --with-match-limit, which
       imposes no additional constraints. However, you can set a  lower  limit
       by adding, for example,

         --with-match-limit-recursion=10000

       to  the  configure  command.  This  value can also be overridden at run
       time.


CREATING CHARACTER TABLES AT BUILD TIME

       PCRE uses fixed tables for processing characters whose code values  are
       less  than 256. By default, PCRE is built with a set of tables that are
       distributed in the file pcre_chartables.c.dist. These  tables  are  for
       ASCII codes only. If you add

         --enable-rebuild-chartables

       to  the  configure  command, the distributed tables are no longer used.
       Instead, a program called dftables is compiled and  run.  This  outputs
       the source for new set of tables, created in the default locale of your
       C runtime system. (This method of replacing the tables does not work if
       you  are cross compiling, because dftables is run on the local host. If
       you need to create alternative tables when cross  compiling,  you  will
       have to do so "by hand".)


USING EBCDIC CODE

       PCRE  assumes  by  default that it will run in an environment where the
       character code is ASCII (or Unicode, which is  a  superset  of  ASCII).
       PCRE  can,  however,  be  compiled  to  run in an EBCDIC environment by
       adding

         --enable-ebcdic

       to the configure command. This setting implies --enable-rebuild-charta-
       bles.


SEE ALSO

       pcreapi(3), pcre_config(3).


AUTHOR

       Philip Hazel
       University Computing Service
       Cambridge CB2 3QH, England.


REVISION

       Last updated: 16 April 2007
       Copyright (c) 1997-2007 University of Cambridge.
------------------------------------------------------------------------------


PCREMATCHING(3)                                                PCREMATCHING(3)


NAME
       PCRE - Perl-compatible regular expressions


PCRE MATCHING ALGORITHMS

       This document describes the two different algorithms that are available
       in PCRE for matching a compiled regular expression against a given sub-
       ject  string.  The  "standard"  algorithm  is  the  one provided by the
       pcre_exec() function.  This works in the same was  as  Perl's  matching
       function, and provides a Perl-compatible matching operation.

       An  alternative  algorithm is provided by the pcre_dfa_exec() function;
       this operates in a different way, and is not  Perl-compatible.  It  has
       advantages  and disadvantages compared with the standard algorithm, and
       these are described below.

       When there is only one possible way in which a given subject string can
       match  a pattern, the two algorithms give the same answer. A difference
       arises, however, when there are multiple possibilities. For example, if
       the pattern

         ^<.*>

       is matched against the string

         <something> <something else> <something further>

       there are three possible answers. The standard algorithm finds only one
       of them, whereas the alternative algorithm finds all three.


REGULAR EXPRESSIONS AS TREES

       The set of strings that are matched by a regular expression can be rep-
       resented  as  a  tree structure. An unlimited repetition in the pattern
       makes the tree of infinite size, but it is still a tree.  Matching  the
       pattern  to a given subject string (from a given starting point) can be
       thought of as a search of the tree.  There are two  ways  to  search  a
       tree:  depth-first  and  breadth-first, and these correspond to the two
       matching algorithms provided by PCRE.


THE STANDARD MATCHING ALGORITHM

       In the terminology of Jeffrey Friedl's book "Mastering Regular  Expres-
       sions",  the  standard  algorithm  is an "NFA algorithm". It conducts a
       depth-first search of the pattern tree. That is, it  proceeds  along  a
       single path through the tree, checking that the subject matches what is
       required. When there is a mismatch, the algorithm  tries  any  alterna-
       tives  at  the  current point, and if they all fail, it backs up to the
       previous branch point in the  tree,  and  tries  the  next  alternative
       branch  at  that  level.  This often involves backing up (moving to the
       left) in the subject string as well.  The  order  in  which  repetition
       branches  are  tried  is controlled by the greedy or ungreedy nature of
       the quantifier.

       If a leaf node is reached, a matching string has  been  found,  and  at
       that  point the algorithm stops. Thus, if there is more than one possi-
       ble match, this algorithm returns the first one that it finds.  Whether
       this  is the shortest, the longest, or some intermediate length depends
       on the way the greedy and ungreedy repetition quantifiers are specified
       in the pattern.

       Because  it  ends  up  with a single path through the tree, it is rela-
       tively straightforward for this algorithm to keep  track  of  the  sub-
       strings  that  are  matched  by portions of the pattern in parentheses.
       This provides support for capturing parentheses and back references.


THE ALTERNATIVE MATCHING ALGORITHM

       This algorithm conducts a breadth-first search of  the  tree.  Starting
       from  the  first  matching  point  in the subject, it scans the subject
       string from left to right, once, character by character, and as it does
       this,  it remembers all the paths through the tree that represent valid
       matches. In Friedl's terminology, this is a kind  of  "DFA  algorithm",
       though  it is not implemented as a traditional finite state machine (it
       keeps multiple states active simultaneously).

       The scan continues until either the end of the subject is  reached,  or
       there  are  no more unterminated paths. At this point, terminated paths
       represent the different matching possibilities (if there are none,  the
       match  has  failed).   Thus,  if there is more than one possible match,
       this algorithm finds all of them, and in particular, it finds the long-
       est.  In PCRE, there is an option to stop the algorithm after the first
       match (which is necessarily the shortest) has been found.

       Note that all the matches that are found start at the same point in the
       subject. If the pattern

         cat(er(pillar)?)

       is  matched  against the string "the caterpillar catchment", the result
       will be the three strings "cat", "cater", and "caterpillar" that  start
       at the fourth character of the subject. The algorithm does not automat-
       ically move on to find matches that start at later positions.

       There are a number of features of PCRE regular expressions that are not
       supported by the alternative matching algorithm. They are as follows:

       1.  Because  the  algorithm  finds  all possible matches, the greedy or
       ungreedy nature of repetition quantifiers is not relevant.  Greedy  and
       ungreedy quantifiers are treated in exactly the same way. However, pos-
       sessive quantifiers can make a difference when what follows could  also
       match what is quantified, for example in a pattern like this:

         ^a++\w!

       This  pattern matches "aaab!" but not "aaa!", which would be matched by
       a non-possessive quantifier. Similarly, if an atomic group is  present,
       it  is matched as if it were a standalone pattern at the current point,
       and the longest match is then "locked in" for the rest of  the  overall
       pattern.

       2. When dealing with multiple paths through the tree simultaneously, it
       is not straightforward to keep track of  captured  substrings  for  the
       different  matching  possibilities,  and  PCRE's implementation of this
       algorithm does not attempt to do this. This means that no captured sub-
       strings are available.

       3.  Because no substrings are captured, back references within the pat-
       tern are not supported, and cause errors if encountered.

       4. For the same reason, conditional expressions that use  a  backrefer-
       ence  as  the  condition or test for a specific group recursion are not
       supported.

       5. Callouts are supported, but the value of the  capture_top  field  is
       always 1, and the value of the capture_last field is always -1.

       6.  The \C escape sequence, which (in the standard algorithm) matches a
       single byte, even in UTF-8 mode, is not supported because the  alterna-
       tive  algorithm  moves  through  the  subject string one character at a
       time, for all active paths through the tree.


ADVANTAGES OF THE ALTERNATIVE ALGORITHM

       Using the alternative matching algorithm provides the following  advan-
       tages:

       1. All possible matches (at a single point in the subject) are automat-
       ically found, and in particular, the longest match is  found.  To  find
       more than one match using the standard algorithm, you have to do kludgy
       things with callouts.

       2. There is much better support for partial matching. The  restrictions
       on  the content of the pattern that apply when using the standard algo-
       rithm for partial matching do not apply to the  alternative  algorithm.
       For  non-anchored patterns, the starting position of a partial match is
       available.

       3. Because the alternative algorithm  scans  the  subject  string  just
       once,  and  never  needs to backtrack, it is possible to pass very long
       subject strings to the matching function in  several  pieces,  checking
       for partial matching each time.


DISADVANTAGES OF THE ALTERNATIVE ALGORITHM

       The alternative algorithm suffers from a number of disadvantages:

       1.  It  is  substantially  slower  than the standard algorithm. This is
       partly because it has to search for all possible matches, but  is  also
       because it is less susceptible to optimization.

       2. Capturing parentheses and back references are not supported.

       3. Although atomic groups are supported, their use does not provide the
       performance advantage that it does for the standard algorithm.


AUTHOR

       Philip Hazel
       University Computing Service
       Cambridge CB2 3QH, England.


REVISION

       Last updated: 06 March 2007
       Copyright (c) 1997-2007 University of Cambridge.
------------------------------------------------------------------------------


PCREAPI(3)                                                          PCREAPI(3)


NAME
       PCRE - Perl-compatible regular expressions


PCRE NATIVE API

       #include <pcre.h>

       pcre *pcre_compile(const char *pattern, int options,
            const char **errptr, int *erroffset,
            const unsigned char *tableptr);

       pcre *pcre_compile2(const char *pattern, int options,
            int *errorcodeptr,
            const char **errptr, int *erroffset,
            const unsigned char *tableptr);

       pcre_extra *pcre_study(const pcre *code, int options,
            const char **errptr);

       int pcre_exec(const pcre *code, const pcre_extra *extra,
            const char *subject, int length, int startoffset,
            int options, int *ovector, int ovecsize);

       int pcre_dfa_exec(const pcre *code, const pcre_extra *extra,
            const char *subject, int length, int startoffset,
            int options, int *ovector, int ovecsize,
            int *workspace, int wscount);

       int pcre_copy_named_substring(const pcre *code,
            const char *subject, int *ovector,
            int stringcount, const char *stringname,
            char *buffer, int buffersize);

       int pcre_copy_substring(const char *subject, int *ovector,
            int stringcount, int stringnumber, char *buffer,
            int buffersize);

       int pcre_get_named_substring(const pcre *code,
            const char *subject, int *ovector,
            int stringcount, const char *stringname,
            const char **stringptr);

       int pcre_get_stringnumber(const pcre *code,
            const char *name);

       int pcre_get_stringtable_entries(const pcre *code,
            const char *name, char **first, char **last);

       int pcre_get_substring(const char *subject, int *ovector,
            int stringcount, int stringnumber,
            const char **stringptr);

       int pcre_get_substring_list(const char *subject,
            int *ovector, int stringcount, const char ***listptr);

       void pcre_free_substring(const char *stringptr);

       void pcre_free_substring_list(const char **stringptr);

       const unsigned char *pcre_maketables(void);

       int pcre_fullinfo(const pcre *code, const pcre_extra *extra,
            int what, void *where);

       int pcre_info(const pcre *code, int *optptr, int *firstcharptr);

       int pcre_refcount(pcre *code, int adjust);

       int pcre_config(int what, void *where);

       char *pcre_version(void);

       void *(*pcre_malloc)(size_t);

       void (*pcre_free)(void *);

       void *(*pcre_stack_malloc)(size_t);

       void (*pcre_stack_free)(void *);

       int (*pcre_callout)(pcre_callout_block *);


PCRE API OVERVIEW

       PCRE has its own native API, which is described in this document. There
       are also some wrapper functions that correspond to  the  POSIX  regular
       expression  API.  These  are  described in the pcreposix documentation.
       Both of these APIs define a set of C function calls. A C++  wrapper  is
       distributed with PCRE. It is documented in the pcrecpp page.

       The  native  API  C  function prototypes are defined in the header file
       pcre.h, and on Unix systems the library itself is called  libpcre.   It
       can normally be accessed by adding -lpcre to the command for linking an
       application  that  uses  PCRE.  The  header  file  defines  the  macros
       PCRE_MAJOR  and  PCRE_MINOR to contain the major and minor release num-
       bers for the library.  Applications can use these  to  include  support
       for different releases of PCRE.

       The   functions   pcre_compile(),  pcre_compile2(),  pcre_study(),  and
       pcre_exec() are used for compiling and matching regular expressions  in
       a  Perl-compatible  manner. A sample program that demonstrates the sim-
       plest way of using them is provided in the file  called  pcredemo.c  in
       the  source distribution. The pcresample documentation describes how to
       run it.

       A second matching function, pcre_dfa_exec(), which is not Perl-compati-
       ble,  is  also provided. This uses a different algorithm for the match-
       ing. The alternative algorithm finds all possible matches (at  a  given
       point  in  the subject), and scans the subject just once. However, this
       algorithm does not return captured substrings. A description of the two
       matching  algorithms and their advantages and disadvantages is given in
       the pcrematching documentation.

       In addition to the main compiling and  matching  functions,  there  are
       convenience functions for extracting captured substrings from a subject
       string that is matched by pcre_exec(). They are:

         pcre_copy_substring()
         pcre_copy_named_substring()
         pcre_get_substring()
         pcre_get_named_substring()
         pcre_get_substring_list()
         pcre_get_stringnumber()
         pcre_get_stringtable_entries()

       pcre_free_substring() and pcre_free_substring_list() are also provided,
       to free the memory used for extracted strings.

       The  function  pcre_maketables()  is  used  to build a set of character
       tables  in  the  current  locale   for   passing   to   pcre_compile(),
       pcre_exec(),  or  pcre_dfa_exec(). This is an optional facility that is
       provided for specialist use.  Most  commonly,  no  special  tables  are
       passed,  in  which case internal tables that are generated when PCRE is
       built are used.

       The function pcre_fullinfo() is used to find out  information  about  a
       compiled  pattern; pcre_info() is an obsolete version that returns only
       some of the available information, but is retained for  backwards  com-
       patibility.   The function pcre_version() returns a pointer to a string
       containing the version of PCRE and its date of release.

       The function pcre_refcount() maintains a  reference  count  in  a  data
       block  containing  a compiled pattern. This is provided for the benefit
       of object-oriented applications.

       The global variables pcre_malloc and pcre_free  initially  contain  the
       entry  points  of  the  standard malloc() and free() functions, respec-
       tively. PCRE calls the memory management functions via these variables,
       so  a  calling  program  can replace them if it wishes to intercept the
       calls. This should be done before calling any PCRE functions.

       The global variables pcre_stack_malloc  and  pcre_stack_free  are  also
       indirections  to  memory  management functions. These special functions
       are used only when PCRE is compiled to use  the  heap  for  remembering
       data, instead of recursive function calls, when running the pcre_exec()
       function. See the pcrebuild documentation for  details  of  how  to  do
       this.  It  is  a non-standard way of building PCRE, for use in environ-
       ments that have limited stacks. Because of the greater  use  of  memory
       management,  it  runs  more  slowly. Separate functions are provided so
       that special-purpose external code can be  used  for  this  case.  When
       used,  these  functions  are always called in a stack-like manner (last
       obtained, first freed), and always for memory blocks of the same  size.
       There  is  a discussion about PCRE's stack usage in the pcrestack docu-
       mentation.

       The global variable pcre_callout initially contains NULL. It can be set
       by  the  caller  to  a "callout" function, which PCRE will then call at
       specified points during a matching operation. Details are given in  the
       pcrecallout documentation.


NEWLINES

       PCRE  supports five different conventions for indicating line breaks in
       strings: a single CR (carriage return) character, a  single  LF  (line-
       feed) character, the two-character sequence CRLF, any of the three pre-
       ceding, or any Unicode newline sequence. The Unicode newline  sequences
       are  the  three just mentioned, plus the single characters VT (vertical
       tab, U+000B), FF (formfeed, U+000C), NEL (next line, U+0085), LS  (line
       separator, U+2028), and PS (paragraph separator, U+2029).

       Each  of  the first three conventions is used by at least one operating
       system as its standard newline sequence. When PCRE is built, a  default
       can  be  specified.  The default default is LF, which is the Unix stan-
       dard. When PCRE is run, the default can be overridden,  either  when  a
       pattern is compiled, or when it is matched.

       In the PCRE documentation the word "newline" is used to mean "the char-
       acter or pair of characters that indicate a line break". The choice  of
       newline  convention  affects  the  handling of the dot, circumflex, and
       dollar metacharacters, the handling of #-comments in /x mode, and, when
       CRLF  is a recognized line ending sequence, the match position advance-
       ment for a non-anchored pattern. The choice of newline convention  does
       not affect the interpretation of the \n or \r escape sequences.


MULTITHREADING

       The  PCRE  functions  can be used in multi-threading applications, with
       the  proviso  that  the  memory  management  functions  pointed  to  by
       pcre_malloc, pcre_free, pcre_stack_malloc, and pcre_stack_free, and the
       callout function pointed to by pcre_callout, are shared by all threads.

       The  compiled form of a regular expression is not altered during match-
       ing, so the same compiled pattern can safely be used by several threads
       at once.


SAVING PRECOMPILED PATTERNS FOR LATER USE

       The compiled form of a regular expression can be saved and re-used at a
       later time, possibly by a different program, and even on a  host  other
       than  the  one  on  which  it  was  compiled.  Details are given in the
       pcreprecompile documentation. However, compiling a  regular  expression
       with  one version of PCRE for use with a different version is not guar-
       anteed to work and may cause crashes.


CHECKING BUILD-TIME OPTIONS

       int pcre_config(int what, void *where);

       The function pcre_config() makes it possible for a PCRE client to  dis-
       cover which optional features have been compiled into the PCRE library.
       The pcrebuild documentation has more details about these optional  fea-
       tures.

       The  first  argument  for pcre_config() is an integer, specifying which
       information is required; the second argument is a pointer to a variable
       into  which  the  information  is  placed. The following information is
       available:

         PCRE_CONFIG_UTF8

       The output is an integer that is set to one if UTF-8 support is  avail-
       able; otherwise it is set to zero.

         PCRE_CONFIG_UNICODE_PROPERTIES

       The  output  is  an  integer  that is set to one if support for Unicode
       character properties is available; otherwise it is set to zero.

         PCRE_CONFIG_NEWLINE

       The output is an integer whose value specifies  the  default  character
       sequence  that is recognized as meaning "newline". The four values that
       are supported are: 10 for LF, 13 for CR, 3338 for CRLF, -2 for ANYCRLF,
       and  -1  for  ANY. The default should normally be the standard sequence
       for your operating system.

         PCRE_CONFIG_LINK_SIZE

       The output is an integer that contains the number  of  bytes  used  for
       internal linkage in compiled regular expressions. The value is 2, 3, or
       4. Larger values allow larger regular expressions to  be  compiled,  at
       the  expense  of  slower matching. The default value of 2 is sufficient
       for all but the most massive patterns, since  it  allows  the  compiled
       pattern to be up to 64K in size.

         PCRE_CONFIG_POSIX_MALLOC_THRESHOLD

       The  output  is  an integer that contains the threshold above which the
       POSIX interface uses malloc() for output vectors. Further  details  are
       given in the pcreposix documentation.

         PCRE_CONFIG_MATCH_LIMIT

       The output is an integer that gives the default limit for the number of
       internal matching function calls in a  pcre_exec()  execution.  Further
       details are given with pcre_exec() below.

         PCRE_CONFIG_MATCH_LIMIT_RECURSION

       The  output is an integer that gives the default limit for the depth of
       recursion when calling the internal matching function in a  pcre_exec()
       execution. Further details are given with pcre_exec() below.

         PCRE_CONFIG_STACKRECURSE

       The  output is an integer that is set to one if internal recursion when
       running pcre_exec() is implemented by recursive function calls that use
       the  stack  to remember their state. This is the usual way that PCRE is
       compiled. The output is zero if PCRE was compiled to use blocks of data
       on  the  heap  instead  of  recursive  function  calls.  In  this case,
       pcre_stack_malloc and  pcre_stack_free  are  called  to  manage  memory
       blocks on the heap, thus avoiding the use of the stack.


COMPILING A PATTERN

       pcre *pcre_compile(const char *pattern, int options,
            const char **errptr, int *erroffset,
            const unsigned char *tableptr);

       pcre *pcre_compile2(const char *pattern, int options,
            int *errorcodeptr,
            const char **errptr, int *erroffset,
            const unsigned char *tableptr);

       Either of the functions pcre_compile() or pcre_compile2() can be called
       to compile a pattern into an internal form. The only difference between
       the  two interfaces is that pcre_compile2() has an additional argument,
       errorcodeptr, via which a numerical error code can be returned.

       The pattern is a C string terminated by a binary zero, and is passed in
       the  pattern  argument.  A  pointer to a single block of memory that is
       obtained via pcre_malloc is returned. This contains the  compiled  code
       and related data. The pcre type is defined for the returned block; this
       is a typedef for a structure whose contents are not externally defined.
       It is up to the caller to free the memory (via pcre_free) when it is no
       longer required.

       Although the compiled code of a PCRE regex is relocatable, that is,  it
       does not depend on memory location, the complete pcre data block is not
       fully relocatable, because it may contain a copy of the tableptr  argu-
       ment, which is an address (see below).

       The options argument contains various bit settings that affect the com-
       pilation. It should be zero if no options are required.  The  available
       options  are  described  below. Some of them, in particular, those that
       are compatible with Perl, can also be set and  unset  from  within  the
       pattern  (see  the  detailed  description in the pcrepattern documenta-
       tion). For these options, the contents of the options  argument  speci-
       fies  their initial settings at the start of compilation and execution.
       The PCRE_ANCHORED and PCRE_NEWLINE_xxx options can be set at  the  time
       of matching as well as at compile time.

       If errptr is NULL, pcre_compile() returns NULL immediately.  Otherwise,
       if compilation of a pattern fails,  pcre_compile()  returns  NULL,  and
       sets the variable pointed to by errptr to point to a textual error mes-
       sage. This is a static string that is part of the library. You must not
       try to free it. The offset from the start of the pattern to the charac-
       ter where the error was discovered is placed in the variable pointed to
       by  erroffset,  which must not be NULL. If it is, an immediate error is
       given.

       If pcre_compile2() is used instead of pcre_compile(),  and  the  error-
       codeptr  argument is not NULL, a non-zero error code number is returned
       via this argument in the event of an error. This is in addition to  the
       textual error message. Error codes and messages are listed below.

       If  the  final  argument, tableptr, is NULL, PCRE uses a default set of
       character tables that are  built  when  PCRE  is  compiled,  using  the
       default  C  locale.  Otherwise, tableptr must be an address that is the
       result of a call to pcre_maketables(). This value is  stored  with  the
       compiled  pattern,  and used again by pcre_exec(), unless another table
       pointer is passed to it. For more discussion, see the section on locale
       support below.

       This  code  fragment  shows a typical straightforward call to pcre_com-
       pile():

         pcre *re;
         const char *error;
         int erroffset;
         re = pcre_compile(
           "^A.*Z",          /* the pattern */
           0,                /* default options */
           &error,           /* for error message */
           &erroffset,       /* for error offset */
           NULL);            /* use default character tables */

       The following names for option bits are defined in  the  pcre.h  header
       file:

         PCRE_ANCHORED

       If this bit is set, the pattern is forced to be "anchored", that is, it
       is constrained to match only at the first matching point in the  string
       that  is being searched (the "subject string"). This effect can also be
       achieved by appropriate constructs in the pattern itself, which is  the
       only way to do it in Perl.

         PCRE_AUTO_CALLOUT

       If this bit is set, pcre_compile() automatically inserts callout items,
       all with number 255, before each pattern item. For  discussion  of  the
       callout facility, see the pcrecallout documentation.

         PCRE_CASELESS

       If  this  bit is set, letters in the pattern match both upper and lower
       case letters. It is equivalent to Perl's  /i  option,  and  it  can  be
       changed  within a pattern by a (?i) option setting. In UTF-8 mode, PCRE
       always understands the concept of case for characters whose values  are
       less  than 128, so caseless matching is always possible. For characters
       with higher values, the concept of case is supported if  PCRE  is  com-
       piled  with Unicode property support, but not otherwise. If you want to
       use caseless matching for characters 128 and  above,  you  must  ensure
       that  PCRE  is  compiled  with Unicode property support as well as with
       UTF-8 support.

         PCRE_DOLLAR_ENDONLY

       If this bit is set, a dollar metacharacter in the pattern matches  only
       at  the  end  of the subject string. Without this option, a dollar also
       matches immediately before a newline at the end of the string (but  not
       before  any  other newlines). The PCRE_DOLLAR_ENDONLY option is ignored
       if PCRE_MULTILINE is set.  There is no equivalent  to  this  option  in
       Perl, and no way to set it within a pattern.

         PCRE_DOTALL

       If this bit is set, a dot metacharater in the pattern matches all char-
       acters, including those that indicate newline. Without it, a  dot  does
       not  match  when  the  current position is at a newline. This option is
       equivalent to Perl's /s option, and it can be changed within a  pattern
       by  a (?s) option setting. A negative class such as [^a] always matches
       newline characters, independent of the setting of this option.

         PCRE_DUPNAMES

       If this bit is set, names used to identify capturing  subpatterns  need
       not be unique. This can be helpful for certain types of pattern when it
       is known that only one instance of the named  subpattern  can  ever  be
       matched.  There  are  more details of named subpatterns below; see also
       the pcrepattern documentation.

         PCRE_EXTENDED

       If this bit is set, whitespace  data  characters  in  the  pattern  are
       totally ignored except when escaped or inside a character class. White-
       space does not include the VT character (code 11). In addition, charac-
       ters between an unescaped # outside a character class and the next new-
       line, inclusive, are also ignored. This  is  equivalent  to  Perl's  /x
       option,  and  it  can be changed within a pattern by a (?x) option set-
       ting.

       This option makes it possible to include  comments  inside  complicated
       patterns.   Note,  however,  that this applies only to data characters.
       Whitespace  characters  may  never  appear  within  special   character
       sequences  in  a  pattern,  for  example  within the sequence (?( which
       introduces a conditional subpattern.

         PCRE_EXTRA

       This option was invented in order to turn on  additional  functionality
       of  PCRE  that  is  incompatible with Perl, but it is currently of very
       little use. When set, any backslash in a pattern that is followed by  a
       letter  that  has  no  special  meaning causes an error, thus reserving
       these combinations for future expansion. By  default,  as  in  Perl,  a
       backslash  followed by a letter with no special meaning is treated as a
       literal. (Perl can, however, be persuaded to give a warning for  this.)
       There  are  at  present no other features controlled by this option. It
       can also be set by a (?X) option setting within a pattern.

         PCRE_FIRSTLINE

       If this option is set, an  unanchored  pattern  is  required  to  match
       before  or  at  the  first  newline  in  the subject string, though the
       matched text may continue over the newline.

         PCRE_MULTILINE

       By default, PCRE treats the subject string as consisting  of  a  single
       line  of characters (even if it actually contains newlines). The "start
       of line" metacharacter (^) matches only at the  start  of  the  string,
       while  the  "end  of line" metacharacter ($) matches only at the end of
       the string, or before a terminating newline (unless PCRE_DOLLAR_ENDONLY
       is set). This is the same as Perl.

       When  PCRE_MULTILINE  it  is set, the "start of line" and "end of line"
       constructs match immediately following or immediately  before  internal
       newlines  in  the  subject string, respectively, as well as at the very
       start and end. This is equivalent to Perl's /m option, and  it  can  be
       changed within a pattern by a (?m) option setting. If there are no new-
       lines in a subject string, or no occurrences of ^ or $  in  a  pattern,
       setting PCRE_MULTILINE has no effect.

         PCRE_NEWLINE_CR
         PCRE_NEWLINE_LF
         PCRE_NEWLINE_CRLF
         PCRE_NEWLINE_ANYCRLF
         PCRE_NEWLINE_ANY

       These  options  override the default newline definition that was chosen
       when PCRE was built. Setting the first or the second specifies  that  a
       newline  is  indicated  by a single character (CR or LF, respectively).
       Setting PCRE_NEWLINE_CRLF specifies that a newline is indicated by  the
       two-character  CRLF  sequence.  Setting  PCRE_NEWLINE_ANYCRLF specifies
       that any of the three preceding sequences should be recognized. Setting
       PCRE_NEWLINE_ANY  specifies that any Unicode newline sequence should be
       recognized. The Unicode newline sequences are the three just mentioned,
       plus  the  single  characters  VT (vertical tab, U+000B), FF (formfeed,
       U+000C), NEL (next line, U+0085), LS (line separator, U+2028),  and  PS
       (paragraph  separator,  U+2029).  The  last  two are recognized only in
       UTF-8 mode.

       The newline setting in the  options  word  uses  three  bits  that  are
       treated as a number, giving eight possibilities. Currently only six are
       used (default plus the five values above). This means that if  you  set
       more  than one newline option, the combination may or may not be sensi-
       ble. For example, PCRE_NEWLINE_CR with PCRE_NEWLINE_LF is equivalent to
       PCRE_NEWLINE_CRLF,  but other combinations may yield unused numbers and
       cause an error.

       The only time that a line break is specially recognized when  compiling
       a  pattern  is  if  PCRE_EXTENDED  is set, and an unescaped # outside a
       character class is encountered. This indicates  a  comment  that  lasts
       until  after the next line break sequence. In other circumstances, line
       break  sequences  are  treated  as  literal  data,   except   that   in
       PCRE_EXTENDED mode, both CR and LF are treated as whitespace characters
       and are therefore ignored.

       The newline option that is set at compile time becomes the default that
       is  used for pcre_exec() and pcre_dfa_exec(), but it can be overridden.

         PCRE_NO_AUTO_CAPTURE

       If this option is set, it disables the use of numbered capturing paren-
       theses  in the pattern. Any opening parenthesis that is not followed by
       ? behaves as if it were followed by ?: but named parentheses can  still
       be  used  for  capturing  (and  they acquire numbers in the usual way).
       There is no equivalent of this option in Perl.

         PCRE_UNGREEDY

       This option inverts the "greediness" of the quantifiers  so  that  they
       are  not greedy by default, but become greedy if followed by "?". It is
       not compatible with Perl. It can also be set by a (?U)  option  setting
       within the pattern.

         PCRE_UTF8

       This  option  causes PCRE to regard both the pattern and the subject as
       strings of UTF-8 characters instead of single-byte  character  strings.
       However,  it is available only when PCRE is built to include UTF-8 sup-
       port. If not, the use of this option provokes an error. Details of  how
       this  option  changes the behaviour of PCRE are given in the section on
       UTF-8 support in the main pcre page.

         PCRE_NO_UTF8_CHECK

       When PCRE_UTF8 is set, the validity of the pattern as a UTF-8 string is
       automatically  checked. If an invalid UTF-8 sequence of bytes is found,
       pcre_compile() returns an error. If you already know that your  pattern
       is  valid, and you want to skip this check for performance reasons, you
       can set the PCRE_NO_UTF8_CHECK option. When it is set,  the  effect  of
       passing an invalid UTF-8 string as a pattern is undefined. It may cause
       your program to crash.  Note that this option can  also  be  passed  to
       pcre_exec()  and pcre_dfa_exec(), to suppress the UTF-8 validity check-
       ing of subject strings.


COMPILATION ERROR CODES

       The following table lists the error  codes  than  may  be  returned  by
       pcre_compile2(),  along with the error messages that may be returned by
       both compiling functions. As PCRE has developed, some error codes  have
       fallen out of use. To avoid confusion, they have not been re-used.

          0  no error
          1  \ at end of pattern
          2  \c at end of pattern
          3  unrecognized character follows \
          4  numbers out of order in {} quantifier
          5  number too big in {} quantifier
          6  missing terminating ] for character class
          7  invalid escape sequence in character class
          8  range out of order in character class
          9  nothing to repeat
         10  [this code is not in use]
         11  internal error: unexpected repeat
         12  unrecognized character after (?
         13  POSIX named classes are supported only within a class
         14  missing )
         15  reference to non-existent subpattern
         16  erroffset passed as NULL
         17  unknown option bit(s) set
         18  missing ) after comment
         19  [this code is not in use]
         20  regular expression too large
         21  failed to get memory
         22  unmatched parentheses
         23  internal error: code overflow
         24  unrecognized character after (?<
         25  lookbehind assertion is not fixed length
         26  malformed number or name after (?(
         27  conditional group contains more than two branches
         28  assertion expected after (?(
         29  (?R or (?digits must be followed by )
         30  unknown POSIX class name
         31  POSIX collating elements are not supported
         32  this version of PCRE is not compiled with PCRE_UTF8 support
         33  [this code is not in use]
         34  character value in \x{...} sequence is too large
         35  invalid condition (?(0)
         36  \C not allowed in lookbehind assertion
         37  PCRE does not support \L, \l, \N, \U, or \u
         38  number after (?C is > 255
         39  closing ) for (?C expected
         40  recursive call could loop indefinitely
         41  unrecognized character after (?P
         42  syntax error in subpattern name (missing terminator)
         43  two named subpatterns have the same name
         44  invalid UTF-8 string
         45  support for \P, \p, and \X has not been compiled
         46  malformed \P or \p sequence
         47  unknown property name after \P or \p
         48  subpattern name is too long (maximum 32 characters)
         49  too many named subpatterns (maximum 10,000)
         50  repeated subpattern is too long
         51  octal value is greater than \377 (not in UTF-8 mode)
         52  internal error: overran compiling workspace
         53   internal  error:  previously-checked  referenced  subpattern not
       found
         54  DEFINE group contains more than one branch
         55  repeating a DEFINE group is not allowed
         56  inconsistent NEWLINE options"


STUDYING A PATTERN

       pcre_extra *pcre_study(const pcre *code, int options
            const char **errptr);

       If a compiled pattern is going to be used several times,  it  is  worth
       spending more time analyzing it in order to speed up the time taken for
       matching. The function pcre_study() takes a pointer to a compiled  pat-
       tern as its first argument. If studying the pattern produces additional
       information that will help speed up matching,  pcre_study()  returns  a
       pointer  to a pcre_extra block, in which the study_data field points to
       the results of the study.

       The  returned  value  from  pcre_study()  can  be  passed  directly  to
       pcre_exec().  However,  a  pcre_extra  block also contains other fields
       that can be set by the caller before the block  is  passed;  these  are
       described below in the section on matching a pattern.

       If  studying  the  pattern  does not produce any additional information
       pcre_study() returns NULL. In that circumstance, if the calling program
       wants  to  pass  any of the other fields to pcre_exec(), it must set up
       its own pcre_extra block.

       The second argument of pcre_study() contains option bits.  At  present,
       no options are defined, and this argument should always be zero.

       The  third argument for pcre_study() is a pointer for an error message.
       If studying succeeds (even if no data is  returned),  the  variable  it
       points  to  is  set  to NULL. Otherwise it is set to point to a textual
       error message. This is a static string that is part of the library. You
       must  not  try  to  free it. You should test the error pointer for NULL
       after calling pcre_study(), to be sure that it has run successfully.

       This is a typical call to pcre_study():

         pcre_extra *pe;
         pe = pcre_study(
           re,             /* result of pcre_compile() */
           0,              /* no options exist */
           &error);        /* set to NULL or points to a message */

       At present, studying a pattern is useful only for non-anchored patterns
       that  do not have a single fixed starting character. A bitmap of possi-
       ble starting bytes is created.


LOCALE SUPPORT

       PCRE handles caseless matching, and determines whether  characters  are
       letters,  digits, or whatever, by reference to a set of tables, indexed
       by character value. When running in UTF-8 mode, this  applies  only  to
       characters  with  codes  less than 128. Higher-valued codes never match
       escapes such as \w or \d, but can be tested with \p if  PCRE  is  built
       with  Unicode  character property support. The use of locales with Uni-
       code is discouraged. If you are handling characters with codes  greater
       than  128, you should either use UTF-8 and Unicode, or use locales, but
       not try to mix the two.

       PCRE contains an internal set of tables that are used  when  the  final
       argument  of  pcre_compile()  is  NULL.  These  are sufficient for many
       applications.  Normally, the internal tables recognize only ASCII char-
       acters. However, when PCRE is built, it is possible to cause the inter-
       nal tables to be rebuilt in the default "C" locale of the local system,
       which may cause them to be different.

       The  internal tables can always be overridden by tables supplied by the
       application that calls PCRE. These may be created in a different locale
       from  the  default.  As more and more applications change to using Uni-
       code, the need for this locale support is expected to die away.

       External tables are built by calling  the  pcre_maketables()  function,
       which  has no arguments, in the relevant locale. The result can then be
       passed to pcre_compile() or pcre_exec()  as  often  as  necessary.  For
       example,  to  build  and use tables that are appropriate for the French
       locale (where accented characters with  values  greater  than  128  are
       treated as letters), the following code could be used:

         setlocale(LC_CTYPE, "fr_FR");
         tables = pcre_maketables();
         re = pcre_compile(..., tables);

       The  locale  name "fr_FR" is used on Linux and other Unix-like systems;
       if you are using Windows, the name for the French locale is "french".

       When pcre_maketables() runs, the tables are built  in  memory  that  is
       obtained  via  pcre_malloc. It is the caller's responsibility to ensure
       that the memory containing the tables remains available for as long  as
       it is needed.

       The pointer that is passed to pcre_compile() is saved with the compiled
       pattern, and the same tables are used via this pointer by  pcre_study()
       and normally also by pcre_exec(). Thus, by default, for any single pat-
       tern, compilation, studying and matching all happen in the same locale,
       but different patterns can be compiled in different locales.

       It  is  possible to pass a table pointer or NULL (indicating the use of
       the internal tables) to pcre_exec(). Although  not  intended  for  this
       purpose,  this facility could be used to match a pattern in a different
       locale from the one in which it was compiled. Passing table pointers at
       run time is discussed below in the section on matching a pattern.


INFORMATION ABOUT A PATTERN

       int pcre_fullinfo(const pcre *code, const pcre_extra *extra,
            int what, void *where);

       The  pcre_fullinfo() function returns information about a compiled pat-
       tern. It replaces the obsolete pcre_info() function, which is neverthe-
       less retained for backwards compability (and is documented below).

       The  first  argument  for  pcre_fullinfo() is a pointer to the compiled
       pattern. The second argument is the result of pcre_study(), or NULL  if
       the  pattern  was not studied. The third argument specifies which piece
       of information is required, and the fourth argument is a pointer  to  a
       variable  to  receive  the  data. The yield of the function is zero for
       success, or one of the following negative numbers:

         PCRE_ERROR_NULL       the argument code was NULL
                               the argument where was NULL
         PCRE_ERROR_BADMAGIC   the "magic number" was not found
         PCRE_ERROR_BADOPTION  the value of what was invalid

       The "magic number" is placed at the start of each compiled  pattern  as
       an  simple check against passing an arbitrary memory pointer. Here is a
       typical call of pcre_fullinfo(), to obtain the length of  the  compiled
       pattern:

         int rc;
         size_t length;
         rc = pcre_fullinfo(
           re,               /* result of pcre_compile() */
           pe,               /* result of pcre_study(), or NULL */
           PCRE_INFO_SIZE,   /* what is required */
           &length);         /* where to put the data */

       The  possible  values for the third argument are defined in pcre.h, and
       are as follows:

         PCRE_INFO_BACKREFMAX

       Return the number of the highest back reference  in  the  pattern.  The
       fourth  argument  should  point to an int variable. Zero is returned if
       there are no back references.

         PCRE_INFO_CAPTURECOUNT

       Return the number of capturing subpatterns in the pattern.  The  fourth
       argument should point to an int variable.

         PCRE_INFO_DEFAULT_TABLES

       Return  a pointer to the internal default character tables within PCRE.
       The fourth argument should point to an unsigned char *  variable.  This
       information call is provided for internal use by the pcre_study() func-
       tion. External callers can cause PCRE to use  its  internal  tables  by
       passing a NULL table pointer.

         PCRE_INFO_FIRSTBYTE

       Return  information  about  the first byte of any matched string, for a
       non-anchored pattern. The fourth argument should point to an int  vari-
       able.  (This option used to be called PCRE_INFO_FIRSTCHAR; the old name
       is still recognized for backwards compatibility.)

       If there is a fixed first byte, for example, from  a  pattern  such  as
       (cat|cow|coyote), its value is returned. Otherwise, if either

       (a)  the pattern was compiled with the PCRE_MULTILINE option, and every
       branch starts with "^", or

       (b) every branch of the pattern starts with ".*" and PCRE_DOTALL is not
       set (if it were set, the pattern would be anchored),

       -1  is  returned, indicating that the pattern matches only at the start
       of a subject string or after any newline within the  string.  Otherwise
       -2 is returned. For anchored patterns, -2 is returned.

         PCRE_INFO_FIRSTTABLE

       If  the pattern was studied, and this resulted in the construction of a
       256-bit table indicating a fixed set of bytes for the first byte in any
       matching  string, a pointer to the table is returned. Otherwise NULL is
       returned. The fourth argument should point to an unsigned char *  vari-
       able.

         PCRE_INFO_LASTLITERAL

       Return  the  value of the rightmost literal byte that must exist in any
       matched string, other than at its  start,  if  such  a  byte  has  been
       recorded. The fourth argument should point to an int variable. If there
       is no such byte, -1 is returned. For anchored patterns, a last  literal
       byte  is  recorded only if it follows something of variable length. For
       example, for the pattern /^a\d+z\d+/ the returned value is "z", but for
       /^a\dz\d/ the returned value is -1.

         PCRE_INFO_NAMECOUNT
         PCRE_INFO_NAMEENTRYSIZE
         PCRE_INFO_NAMETABLE

       PCRE  supports the use of named as well as numbered capturing parenthe-
       ses. The names are just an additional way of identifying the  parenthe-
       ses, which still acquire numbers. Several convenience functions such as
       pcre_get_named_substring() are provided for  extracting  captured  sub-
       strings  by  name. It is also possible to extract the data directly, by
       first converting the name to a number in order to  access  the  correct
       pointers in the output vector (described with pcre_exec() below). To do
       the conversion, you need  to  use  the  name-to-number  map,  which  is
       described by these three values.

       The map consists of a number of fixed-size entries. PCRE_INFO_NAMECOUNT
       gives the number of entries, and PCRE_INFO_NAMEENTRYSIZE gives the size
       of  each  entry;  both  of  these  return  an int value. The entry size
       depends on the length of the longest name. PCRE_INFO_NAMETABLE  returns
       a  pointer  to  the  first  entry of the table (a pointer to char). The
       first two bytes of each entry are the number of the capturing parenthe-
       sis,  most  significant byte first. The rest of the entry is the corre-
       sponding name, zero terminated. The names are  in  alphabetical  order.
       When PCRE_DUPNAMES is set, duplicate names are in order of their paren-
       theses numbers. For example, consider  the  following  pattern  (assume
       PCRE_EXTENDED  is  set,  so  white  space  -  including  newlines  - is
       ignored):

         (?<date> (?<year>(\d\d)?\d\d) -
         (?<month>\d\d) - (?<day>\d\d) )

       There are four named subpatterns, so the table has  four  entries,  and
       each  entry  in the table is eight bytes long. The table is as follows,
       with non-printing bytes shows in hexadecimal, and undefined bytes shown
       as ??:

         00 01 d  a  t  e  00 ??
         00 05 d  a  y  00 ?? ??
         00 04 m  o  n  t  h  00
         00 02 y  e  a  r  00 ??

       When  writing  code  to  extract  data from named subpatterns using the
       name-to-number map, remember that the length of the entries  is  likely
       to be different for each compiled pattern.

         PCRE_INFO_OPTIONS

       Return  a  copy of the options with which the pattern was compiled. The
       fourth argument should point to an unsigned long  int  variable.  These
       option bits are those specified in the call to pcre_compile(), modified
       by any top-level option settings within the pattern itself.

       A pattern is automatically anchored by PCRE if  all  of  its  top-level
       alternatives begin with one of the following:

         ^     unless PCRE_MULTILINE is set
         \A    always
         \G    always
         .*    if PCRE_DOTALL is set and there are no back
                 references to the subpattern in which .* appears

       For such patterns, the PCRE_ANCHORED bit is set in the options returned
       by pcre_fullinfo().

         PCRE_INFO_SIZE

       Return the size of the compiled pattern, that is, the  value  that  was
       passed as the argument to pcre_malloc() when PCRE was getting memory in
       which to place the compiled data. The fourth argument should point to a
       size_t variable.

         PCRE_INFO_STUDYSIZE

       Return the size of the data block pointed to by the study_data field in
       a pcre_extra block. That is,  it  is  the  value  that  was  passed  to
       pcre_malloc() when PCRE was getting memory into which to place the data
       created by pcre_study(). The fourth argument should point to  a  size_t
       variable.


OBSOLETE INFO FUNCTION

       int pcre_info(const pcre *code, int *optptr, int *firstcharptr);

       The  pcre_info()  function is now obsolete because its interface is too
       restrictive to return all the available data about a compiled  pattern.
       New   programs   should  use  pcre_fullinfo()  instead.  The  yield  of
       pcre_info() is the number of capturing subpatterns, or one of the  fol-
       lowing negative numbers:

         PCRE_ERROR_NULL       the argument code was NULL
         PCRE_ERROR_BADMAGIC   the "magic number" was not found

       If  the  optptr  argument is not NULL, a copy of the options with which
       the pattern was compiled is placed in the integer  it  points  to  (see
       PCRE_INFO_OPTIONS above).

       If  the  pattern  is  not anchored and the firstcharptr argument is not
       NULL, it is used to pass back information about the first character  of
       any matched string (see PCRE_INFO_FIRSTBYTE above).


REFERENCE COUNTS

       int pcre_refcount(pcre *code, int adjust);

       The  pcre_refcount()  function is used to maintain a reference count in
       the data block that contains a compiled pattern. It is provided for the
       benefit  of  applications  that  operate  in an object-oriented manner,
       where different parts of the application may be using the same compiled
       pattern, but you want to free the block when they are all done.

       When a pattern is compiled, the reference count field is initialized to
       zero.  It is changed only by calling this function, whose action is  to
       add  the  adjust  value  (which may be positive or negative) to it. The
       yield of the function is the new value. However, the value of the count
       is  constrained to lie between 0 and 65535, inclusive. If the new value
       is outside these limits, it is forced to the appropriate limit value.

       Except when it is zero, the reference count is not correctly  preserved
       if  a  pattern  is  compiled on one host and then transferred to a host
       whose byte-order is different. (This seems a highly unlikely scenario.)


MATCHING A PATTERN: THE TRADITIONAL FUNCTION

       int pcre_exec(const pcre *code, const pcre_extra *extra,
            const char *subject, int length, int startoffset,
            int options, int *ovector, int ovecsize);

       The  function pcre_exec() is called to match a subject string against a
       compiled pattern, which is passed in the code argument. If the  pattern
       has been studied, the result of the study should be passed in the extra
       argument. This function is the main matching facility of  the  library,
       and it operates in a Perl-like manner. For specialist use there is also
       an alternative matching function, which is described below in the  sec-
       tion about the pcre_dfa_exec() function.

       In  most applications, the pattern will have been compiled (and option-
       ally studied) in the same process that calls pcre_exec().  However,  it
       is possible to save compiled patterns and study data, and then use them
       later in different processes, possibly even on different hosts.  For  a
       discussion about this, see the pcreprecompile documentation.

       Here is an example of a simple call to pcre_exec():

         int rc;
         int ovector[30];
         rc = pcre_exec(
           re,             /* result of pcre_compile() */
           NULL,           /* we didn't study the pattern */
           "some string",  /* the subject string */
           11,             /* the length of the subject string */
           0,              /* start at offset 0 in the subject */
           0,              /* default options */
           ovector,        /* vector of integers for substring information */
           30);            /* number of elements (NOT size in bytes) */

   Extra data for pcre_exec()

       If  the  extra argument is not NULL, it must point to a pcre_extra data
       block. The pcre_study() function returns such a block (when it  doesn't
       return  NULL), but you can also create one for yourself, and pass addi-
       tional information in it. The pcre_extra block contains  the  following
       fields (not necessarily in this order):

         unsigned long int flags;
         void *study_data;
         unsigned long int match_limit;
         unsigned long int match_limit_recursion;
         void *callout_data;
         const unsigned char *tables;

       The  flags  field  is a bitmap that specifies which of the other fields
       are set. The flag bits are:

         PCRE_EXTRA_STUDY_DATA
         PCRE_EXTRA_MATCH_LIMIT
         PCRE_EXTRA_MATCH_LIMIT_RECURSION
         PCRE_EXTRA_CALLOUT_DATA
         PCRE_EXTRA_TABLES

       Other flag bits should be set to zero. The study_data field is  set  in
       the  pcre_extra  block  that is returned by pcre_study(), together with
       the appropriate flag bit. You should not set this yourself, but you may
       add  to  the  block by setting the other fields and their corresponding
       flag bits.

       The match_limit field provides a means of preventing PCRE from using up
       a  vast amount of resources when running patterns that are not going to
       match, but which have a very large number  of  possibilities  in  their
       search  trees.  The  classic  example  is  the  use of nested unlimited
       repeats.

       Internally, PCRE uses a function called match() which it calls  repeat-
       edly  (sometimes  recursively). The limit set by match_limit is imposed
       on the number of times this function is called during  a  match,  which
       has  the  effect  of  limiting the amount of backtracking that can take
       place. For patterns that are not anchored, the count restarts from zero
       for each position in the subject string.

       The  default  value  for  the  limit can be set when PCRE is built; the
       default default is 10 million, which handles all but the  most  extreme
       cases.  You  can  override  the  default by suppling pcre_exec() with a
       pcre_extra    block    in    which    match_limit    is    set,     and
       PCRE_EXTRA_MATCH_LIMIT  is  set  in  the  flags  field. If the limit is
       exceeded, pcre_exec() returns PCRE_ERROR_MATCHLIMIT.

       The match_limit_recursion field is similar to match_limit, but  instead
       of limiting the total number of times that match() is called, it limits
       the depth of recursion. The recursion depth is a  smaller  number  than
       the  total number of calls, because not all calls to match() are recur-
       sive.  This limit is of use only if it is set smaller than match_limit.

       Limiting  the  recursion  depth  limits the amount of stack that can be
       used, or, when PCRE has been compiled to use memory on the heap instead
       of the stack, the amount of heap memory that can be used.

       The  default  value  for  match_limit_recursion can be set when PCRE is
       built; the default default  is  the  same  value  as  the  default  for
       match_limit.  You can override the default by suppling pcre_exec() with
       a  pcre_extra  block  in  which  match_limit_recursion  is   set,   and
       PCRE_EXTRA_MATCH_LIMIT_RECURSION  is  set  in  the  flags field. If the
       limit is exceeded, pcre_exec() returns PCRE_ERROR_RECURSIONLIMIT.

       The pcre_callout field is used in conjunction with the  "callout"  fea-
       ture, which is described in the pcrecallout documentation.

       The  tables  field  is  used  to  pass  a  character  tables pointer to
       pcre_exec(); this overrides the value that is stored with the  compiled
       pattern.  A  non-NULL value is stored with the compiled pattern only if
       custom tables were supplied to pcre_compile() via  its  tableptr  argu-
       ment.  If NULL is passed to pcre_exec() using this mechanism, it forces
       PCRE's internal tables to be used. This facility is  helpful  when  re-
       using  patterns  that  have been saved after compiling with an external
       set of tables, because the external tables  might  be  at  a  different
       address  when  pcre_exec() is called. See the pcreprecompile documenta-
       tion for a discussion of saving compiled patterns for later use.

   Option bits for pcre_exec()

       The unused bits of the options argument for pcre_exec() must  be  zero.
       The  only  bits  that  may  be set are PCRE_ANCHORED, PCRE_NEWLINE_xxx,
       PCRE_NOTBOL,   PCRE_NOTEOL,   PCRE_NOTEMPTY,   PCRE_NO_UTF8_CHECK   and
       PCRE_PARTIAL.

         PCRE_ANCHORED

       The  PCRE_ANCHORED  option  limits pcre_exec() to matching at the first
       matching position. If a pattern was  compiled  with  PCRE_ANCHORED,  or
       turned  out to be anchored by virtue of its contents, it cannot be made
       unachored at matching time.

         PCRE_NEWLINE_CR
         PCRE_NEWLINE_LF
         PCRE_NEWLINE_CRLF
         PCRE_NEWLINE_ANYCRLF
         PCRE_NEWLINE_ANY

       These options override  the  newline  definition  that  was  chosen  or
       defaulted  when the pattern was compiled. For details, see the descrip-
       tion of pcre_compile()  above.  During  matching,  the  newline  choice
       affects  the  behaviour  of the dot, circumflex, and dollar metacharac-
       ters. It may also alter the way the match position is advanced after  a
       match  failure  for  an  unanchored  pattern.  When  PCRE_NEWLINE_CRLF,
       PCRE_NEWLINE_ANYCRLF, or PCRE_NEWLINE_ANY is set, and a  match  attempt
       fails  when the current position is at a CRLF sequence, the match posi-
       tion is advanced by two characters instead of one, in other  words,  to
       after the CRLF.

         PCRE_NOTBOL

       This option specifies that first character of the subject string is not
       the beginning of a line, so the  circumflex  metacharacter  should  not
       match  before it. Setting this without PCRE_MULTILINE (at compile time)
       causes circumflex never to match. This option affects only  the  behav-
       iour of the circumflex metacharacter. It does not affect \A.

         PCRE_NOTEOL

       This option specifies that the end of the subject string is not the end
       of a line, so the dollar metacharacter should not match it nor  (except
       in  multiline mode) a newline immediately before it. Setting this with-
       out PCRE_MULTILINE (at compile time) causes dollar never to match. This
       option  affects only the behaviour of the dollar metacharacter. It does
       not affect \Z or \z.

         PCRE_NOTEMPTY

       An empty string is not considered to be a valid match if this option is
       set.  If  there are alternatives in the pattern, they are tried. If all
       the alternatives match the empty string, the entire  match  fails.  For
       example, if the pattern

         a?b?

       is  applied  to  a string not beginning with "a" or "b", it matches the
       empty string at the start of the subject. With PCRE_NOTEMPTY set,  this
       match is not valid, so PCRE searches further into the string for occur-
       rences of "a" or "b".

       Perl has no direct equivalent of PCRE_NOTEMPTY, but it does make a spe-
       cial  case  of  a  pattern match of the empty string within its split()
       function, and when using the /g modifier. It  is  possible  to  emulate
       Perl's behaviour after matching a null string by first trying the match
       again at the same offset with PCRE_NOTEMPTY and PCRE_ANCHORED, and then
       if  that  fails by advancing the starting offset (see below) and trying
       an ordinary match again. There is some code that demonstrates how to do
       this in the pcredemo.c sample program.

         PCRE_NO_UTF8_CHECK

       When PCRE_UTF8 is set at compile time, the validity of the subject as a
       UTF-8 string is automatically checked when pcre_exec() is  subsequently
       called.   The  value  of  startoffset is also checked to ensure that it
       points to the start of a UTF-8 character. If an invalid UTF-8  sequence
       of bytes is found, pcre_exec() returns the error PCRE_ERROR_BADUTF8. If
       startoffset contains an  invalid  value,  PCRE_ERROR_BADUTF8_OFFSET  is
       returned.

       If  you  already  know that your subject is valid, and you want to skip
       these   checks   for   performance   reasons,   you   can    set    the
       PCRE_NO_UTF8_CHECK  option  when calling pcre_exec(). You might want to
       do this for the second and subsequent calls to pcre_exec() if  you  are
       making  repeated  calls  to  find  all  the matches in a single subject
       string. However, you should be  sure  that  the  value  of  startoffset
       points  to  the  start of a UTF-8 character. When PCRE_NO_UTF8_CHECK is
       set, the effect of passing an invalid UTF-8 string as a subject,  or  a
       value  of startoffset that does not point to the start of a UTF-8 char-
       acter, is undefined. Your program may crash.

         PCRE_PARTIAL

       This option turns on the  partial  matching  feature.  If  the  subject
       string  fails to match the pattern, but at some point during the match-
       ing process the end of the subject was reached (that  is,  the  subject
       partially  matches  the  pattern and the failure to match occurred only
       because there were not enough subject characters), pcre_exec()  returns
       PCRE_ERROR_PARTIAL  instead of PCRE_ERROR_NOMATCH. When PCRE_PARTIAL is
       used, there are restrictions on what may appear in the  pattern.  These
       are discussed in the pcrepartial documentation.

   The string to be matched by pcre_exec()

       The  subject string is passed to pcre_exec() as a pointer in subject, a
       length in length, and a starting byte offset in startoffset.  In  UTF-8
       mode,  the  byte  offset  must point to the start of a UTF-8 character.
       Unlike the pattern string, the subject may contain binary  zero  bytes.
       When  the starting offset is zero, the search for a match starts at the
       beginning of the subject, and this is by far the most common case.

       A non-zero starting offset is useful when searching for  another  match
       in  the same subject by calling pcre_exec() again after a previous suc-
       cess.  Setting startoffset differs from just passing over  a  shortened
       string  and  setting  PCRE_NOTBOL  in the case of a pattern that begins
       with any kind of lookbehind. For example, consider the pattern

         \Biss\B

       which finds occurrences of "iss" in the middle of  words.  (\B  matches
       only  if  the  current position in the subject is not a word boundary.)
       When applied to the string "Mississipi" the first call  to  pcre_exec()
       finds  the  first  occurrence. If pcre_exec() is called again with just
       the remainder of the subject,  namely  "issipi",  it  does  not  match,
       because \B is always false at the start of the subject, which is deemed
       to be a word boundary. However, if pcre_exec()  is  passed  the  entire
       string again, but with startoffset set to 4, it finds the second occur-
       rence of "iss" because it is able to look behind the starting point  to
       discover that it is preceded by a letter.

       If  a  non-zero starting offset is passed when the pattern is anchored,
       one attempt to match at the given offset is made. This can only succeed
       if  the  pattern  does  not require the match to be at the start of the
       subject.

   How pcre_exec() returns captured substrings

       In general, a pattern matches a certain portion of the subject, and  in
       addition,  further  substrings  from  the  subject may be picked out by
       parts of the pattern. Following the usage  in  Jeffrey  Friedl's  book,
       this  is  called "capturing" in what follows, and the phrase "capturing
       subpattern" is used for a fragment of a pattern that picks out  a  sub-
       string.  PCRE  supports several other kinds of parenthesized subpattern
       that do not cause substrings to be captured.

       Captured substrings are returned to the caller via a vector of  integer
       offsets  whose  address is passed in ovector. The number of elements in
       the vector is passed in ovecsize, which must be a non-negative  number.
       Note: this argument is NOT the size of ovector in bytes.

       The  first  two-thirds of the vector is used to pass back captured sub-
       strings, each substring using a pair of integers. The  remaining  third
       of  the  vector is used as workspace by pcre_exec() while matching cap-
       turing subpatterns, and is not available for passing back  information.
       The  length passed in ovecsize should always be a multiple of three. If
       it is not, it is rounded down.

       When a match is successful, information about  captured  substrings  is
       returned  in  pairs  of integers, starting at the beginning of ovector,
       and continuing up to two-thirds of its length at the  most.  The  first
       element of a pair is set to the offset of the first character in a sub-
       string, and the second is set to the  offset  of  the  first  character
       after  the  end  of  a  substring. The first pair, ovector[0] and ovec-
       tor[1], identify the portion of  the  subject  string  matched  by  the
       entire  pattern.  The next pair is used for the first capturing subpat-
       tern, and so on. The value returned by pcre_exec() is one more than the
       highest numbered pair that has been set. For example, if two substrings
       have been captured, the returned value is 3. If there are no  capturing
       subpatterns,  the return value from a successful match is 1, indicating
       that just the first pair of offsets has been set.

       If a capturing subpattern is matched repeatedly, it is the last portion
       of the string that it matched that is returned.

       If  the vector is too small to hold all the captured substring offsets,
       it is used as far as possible (up to two-thirds of its length), and the
       function  returns a value of zero. In particular, if the substring off-
       sets are not of interest, pcre_exec() may be called with ovector passed
       as  NULL  and  ovecsize  as zero. However, if the pattern contains back
       references and the ovector is not big enough to  remember  the  related
       substrings,  PCRE has to get additional memory for use during matching.
       Thus it is usually advisable to supply an ovector.

       The pcre_info() function can be used to find  out  how  many  capturing
       subpatterns  there  are  in  a  compiled pattern. The smallest size for
       ovector that will allow for n captured substrings, in addition  to  the
       offsets of the substring matched by the whole pattern, is (n+1)*3.

       It  is  possible for capturing subpattern number n+1 to match some part
       of the subject when subpattern n has not been used at all. For example,
       if  the  string  "abc"  is  matched against the pattern (a|(z))(bc) the
       return from the function is 4, and subpatterns 1 and 3 are matched, but
       2  is  not.  When  this happens, both values in the offset pairs corre-
       sponding to unused subpatterns are set to -1.

       Offset values that correspond to unused subpatterns at the end  of  the
       expression  are  also  set  to  -1. For example, if the string "abc" is
       matched against the pattern (abc)(x(yz)?)? subpatterns 2 and 3 are  not
       matched.  The  return  from the function is 2, because the highest used
       capturing subpattern number is 1. However, you can refer to the offsets
       for  the  second  and third capturing subpatterns if you wish (assuming
       the vector is large enough, of course).

       Some convenience functions are provided  for  extracting  the  captured
       substrings as separate strings. These are described below.

   Error return values from pcre_exec()

       If  pcre_exec()  fails, it returns a negative number. The following are
       defined in the header file:

         PCRE_ERROR_NOMATCH        (-1)

       The subject string did not match the pattern.

         PCRE_ERROR_NULL           (-2)

       Either code or subject was passed as NULL,  or  ovector  was  NULL  and
       ovecsize was not zero.

         PCRE_ERROR_BADOPTION      (-3)

       An unrecognized bit was set in the options argument.

         PCRE_ERROR_BADMAGIC       (-4)

       PCRE  stores a 4-byte "magic number" at the start of the compiled code,
       to catch the case when it is passed a junk pointer and to detect when a
       pattern that was compiled in an environment of one endianness is run in
       an environment with the other endianness. This is the error  that  PCRE
       gives when the magic number is not present.

         PCRE_ERROR_UNKNOWN_OPCODE (-5)

       While running the pattern match, an unknown item was encountered in the
       compiled pattern. This error could be caused by a bug  in  PCRE  or  by
       overwriting of the compiled pattern.

         PCRE_ERROR_NOMEMORY       (-6)

       If  a  pattern contains back references, but the ovector that is passed
       to pcre_exec() is not big enough to remember the referenced substrings,
       PCRE  gets  a  block of memory at the start of matching to use for this
       purpose. If the call via pcre_malloc() fails, this error is given.  The
       memory is automatically freed at the end of matching.

         PCRE_ERROR_NOSUBSTRING    (-7)

       This  error is used by the pcre_copy_substring(), pcre_get_substring(),
       and  pcre_get_substring_list()  functions  (see  below).  It  is  never
       returned by pcre_exec().

         PCRE_ERROR_MATCHLIMIT     (-8)

       The  backtracking  limit,  as  specified  by the match_limit field in a
       pcre_extra structure (or defaulted) was reached.  See  the  description
       above.

         PCRE_ERROR_CALLOUT        (-9)

       This error is never generated by pcre_exec() itself. It is provided for
       use by callout functions that want to yield a distinctive  error  code.
       See the pcrecallout documentation for details.

         PCRE_ERROR_BADUTF8        (-10)

       A  string  that contains an invalid UTF-8 byte sequence was passed as a
       subject.

         PCRE_ERROR_BADUTF8_OFFSET (-11)

       The UTF-8 byte sequence that was passed as a subject was valid, but the
       value  of startoffset did not point to the beginning of a UTF-8 charac-
       ter.

         PCRE_ERROR_PARTIAL        (-12)

       The subject string did not match, but it did match partially.  See  the
       pcrepartial documentation for details of partial matching.

         PCRE_ERROR_BADPARTIAL     (-13)

       The  PCRE_PARTIAL  option  was  used with a compiled pattern containing
       items that are not supported for partial matching. See the  pcrepartial
       documentation for details of partial matching.

         PCRE_ERROR_INTERNAL       (-14)

       An  unexpected  internal error has occurred. This error could be caused
       by a bug in PCRE or by overwriting of the compiled pattern.

         PCRE_ERROR_BADCOUNT       (-15)

       This error is given if the value of the ovecsize argument is  negative.

         PCRE_ERROR_RECURSIONLIMIT (-21)

       The internal recursion limit, as specified by the match_limit_recursion
       field in a pcre_extra structure (or defaulted)  was  reached.  See  the
       description above.

         PCRE_ERROR_NULLWSLIMIT    (-22)

       When  a  group  that  can  match an empty substring is repeated with an
       unbounded upper limit, the subject position at the start of  the  group
       must be remembered, so that a test for an empty string can be made when
       the end of the group is reached. Some workspace is required  for  this;
       if it runs out, this error is given.

         PCRE_ERROR_BADNEWLINE     (-23)

       An invalid combination of PCRE_NEWLINE_xxx options was given.

       Error numbers -16 to -20 are not used by pcre_exec().


EXTRACTING CAPTURED SUBSTRINGS BY NUMBER

       int pcre_copy_substring(const char *subject, int *ovector,
            int stringcount, int stringnumber, char *buffer,
            int buffersize);

       int pcre_get_substring(const char *subject, int *ovector,
            int stringcount, int stringnumber,
            const char **stringptr);

       int pcre_get_substring_list(const char *subject,
            int *ovector, int stringcount, const char ***listptr);

       Captured  substrings  can  be  accessed  directly  by using the offsets
       returned by pcre_exec() in  ovector.  For  convenience,  the  functions
       pcre_copy_substring(),    pcre_get_substring(),    and    pcre_get_sub-
       string_list() are provided for extracting captured substrings  as  new,
       separate,  zero-terminated strings. These functions identify substrings
       by number. The next section describes functions  for  extracting  named
       substrings.

       A  substring that contains a binary zero is correctly extracted and has
       a further zero added on the end, but the result is not, of course, a  C
       string.   However,  you  can  process such a string by referring to the
       length that is  returned  by  pcre_copy_substring()  and  pcre_get_sub-
       string().  Unfortunately, the interface to pcre_get_substring_list() is
       not adequate for handling strings containing binary zeros, because  the
       end of the final string is not independently indicated.

       The  first  three  arguments  are the same for all three of these func-
       tions: subject is the subject string that has  just  been  successfully
       matched, ovector is a pointer to the vector of integer offsets that was
       passed to pcre_exec(), and stringcount is the number of substrings that
       were  captured  by  the match, including the substring that matched the
       entire regular expression. This is the value returned by pcre_exec() if
       it  is greater than zero. If pcre_exec() returned zero, indicating that
       it ran out of space in ovector, the value passed as stringcount  should
       be the number of elements in the vector divided by three.

       The  functions pcre_copy_substring() and pcre_get_substring() extract a
       single substring, whose number is given as  stringnumber.  A  value  of
       zero  extracts  the  substring that matched the entire pattern, whereas
       higher values  extract  the  captured  substrings.  For  pcre_copy_sub-
       string(),  the  string  is  placed  in buffer, whose length is given by
       buffersize, while for pcre_get_substring() a new  block  of  memory  is
       obtained  via  pcre_malloc,  and its address is returned via stringptr.
       The yield of the function is the length of the  string,  not  including
       the terminating zero, or one of these error codes:

         PCRE_ERROR_NOMEMORY       (-6)

       The  buffer  was too small for pcre_copy_substring(), or the attempt to
       get memory failed for pcre_get_substring().

         PCRE_ERROR_NOSUBSTRING    (-7)

       There is no substring whose number is stringnumber.

       The pcre_get_substring_list()  function  extracts  all  available  sub-
       strings  and  builds  a list of pointers to them. All this is done in a
       single block of memory that is obtained via pcre_malloc. The address of
       the  memory  block  is returned via listptr, which is also the start of
       the list of string pointers. The end of the list is marked  by  a  NULL
       pointer.  The  yield  of  the function is zero if all went well, or the
       error code

         PCRE_ERROR_NOMEMORY       (-6)

       if the attempt to get the memory block failed.

       When any of these functions encounter a substring that is unset,  which
       can  happen  when  capturing subpattern number n+1 matches some part of
       the subject, but subpattern n has not been used at all, they return  an
       empty string. This can be distinguished from a genuine zero-length sub-
       string by inspecting the appropriate offset in ovector, which is  nega-
       tive for unset substrings.

       The  two convenience functions pcre_free_substring() and pcre_free_sub-
       string_list() can be used to free the memory  returned  by  a  previous
       call  of  pcre_get_substring()  or  pcre_get_substring_list(),  respec-
       tively. They do nothing more than  call  the  function  pointed  to  by
       pcre_free,  which  of course could be called directly from a C program.
       However, PCRE is used in some situations where it is linked via a  spe-
       cial   interface  to  another  programming  language  that  cannot  use
       pcre_free directly; it is for these cases that the functions  are  pro-
       vided.


EXTRACTING CAPTURED SUBSTRINGS BY NAME

       int pcre_get_stringnumber(const pcre *code,
            const char *name);

       int pcre_copy_named_substring(const pcre *code,
            const char *subject, int *ovector,
            int stringcount, const char *stringname,
            char *buffer, int buffersize);

       int pcre_get_named_substring(const pcre *code,
            const char *subject, int *ovector,
            int stringcount, const char *stringname,
            const char **stringptr);

       To  extract a substring by name, you first have to find associated num-
       ber.  For example, for this pattern

         (a+)b(?<xxx>\d+)...

       the number of the subpattern called "xxx" is 2. If the name is known to
       be unique (PCRE_DUPNAMES was not set), you can find the number from the
       name by calling pcre_get_stringnumber(). The first argument is the com-
       piled pattern, and the second is the name. The yield of the function is
       the subpattern number, or PCRE_ERROR_NOSUBSTRING (-7) if  there  is  no
       subpattern of that name.

       Given the number, you can extract the substring directly, or use one of
       the functions described in the previous section. For convenience, there
       are also two functions that do the whole job.

       Most    of    the    arguments   of   pcre_copy_named_substring()   and
       pcre_get_named_substring() are the same  as  those  for  the  similarly
       named  functions  that extract by number. As these are described in the
       previous section, they are not re-described here. There  are  just  two
       differences:

       First,  instead  of a substring number, a substring name is given. Sec-
       ond, there is an extra argument, given at the start, which is a pointer
       to  the compiled pattern. This is needed in order to gain access to the
       name-to-number translation table.

       These functions call pcre_get_stringnumber(), and if it succeeds,  they
       then  call  pcre_copy_substring() or pcre_get_substring(), as appropri-
       ate. NOTE: If PCRE_DUPNAMES is set and there are duplicate  names,  the
       behaviour may not be what you want (see the next section).


DUPLICATE SUBPATTERN NAMES

       int pcre_get_stringtable_entries(const pcre *code,
            const char *name, char **first, char **last);

       When  a  pattern  is  compiled with the PCRE_DUPNAMES option, names for
       subpatterns are not required to  be  unique.  Normally,  patterns  with
       duplicate  names  are such that in any one match, only one of the named
       subpatterns participates. An example is shown in the pcrepattern  docu-
       mentation. When duplicates are present, pcre_copy_named_substring() and
       pcre_get_named_substring() return the first substring corresponding  to
       the  given  name  that  is  set.  If  none  are set, an empty string is
       returned.  The pcre_get_stringnumber() function returns one of the num-
       bers  that are associated with the name, but it is not defined which it
       is.

       If you want to get full details of all captured substrings for a  given
       name,  you  must  use  the pcre_get_stringtable_entries() function. The
       first argument is the compiled pattern, and the second is the name. The
       third  and  fourth  are  pointers to variables which are updated by the
       function. After it has run, they point to the first and last entries in
       the  name-to-number  table  for  the  given  name.  The function itself
       returns the length of each entry,  or  PCRE_ERROR_NOSUBSTRING  (-7)  if
       there  are none. The format of the table is described above in the sec-
       tion entitled Information about a  pattern.   Given  all  the  relevant
       entries  for the name, you can extract each of their numbers, and hence
       the captured data, if any.


FINDING ALL POSSIBLE MATCHES

       The traditional matching function uses a  similar  algorithm  to  Perl,
       which stops when it finds the first match, starting at a given point in
       the subject. If you want to find all possible matches, or  the  longest
       possible  match,  consider using the alternative matching function (see
       below) instead. If you cannot use the alternative function,  but  still
       need  to  find all possible matches, you can kludge it up by making use
       of the callout facility, which is described in the pcrecallout documen-
       tation.

       What you have to do is to insert a callout right at the end of the pat-
       tern.  When your callout function is called, extract and save the  cur-
       rent  matched  substring.  Then  return  1, which forces pcre_exec() to
       backtrack and try other alternatives. Ultimately, when it runs  out  of
       matches, pcre_exec() will yield PCRE_ERROR_NOMATCH.


MATCHING A PATTERN: THE ALTERNATIVE FUNCTION

       int pcre_dfa_exec(const pcre *code, const pcre_extra *extra,
            const char *subject, int length, int startoffset,
            int options, int *ovector, int ovecsize,
            int *workspace, int wscount);

       The  function  pcre_dfa_exec()  is  called  to  match  a subject string
       against a compiled pattern, using a matching algorithm that  scans  the
       subject  string  just  once, and does not backtrack. This has different
       characteristics to the normal algorithm, and  is  not  compatible  with
       Perl.  Some  of the features of PCRE patterns are not supported. Never-
       theless, there are times when this kind of matching can be useful.  For
       a discussion of the two matching algorithms, see the pcrematching docu-
       mentation.

       The arguments for the pcre_dfa_exec() function  are  the  same  as  for
       pcre_exec(), plus two extras. The ovector argument is used in a differ-
       ent way, and this is described below. The other  common  arguments  are
       used  in  the  same way as for pcre_exec(), so their description is not
       repeated here.

       The two additional arguments provide workspace for  the  function.  The
       workspace  vector  should  contain at least 20 elements. It is used for
       keeping  track  of  multiple  paths  through  the  pattern  tree.  More
       workspace  will  be  needed for patterns and subjects where there are a
       lot of potential matches.

       Here is an example of a simple call to pcre_dfa_exec():

         int rc;
         int ovector[10];
         int wspace[20];
         rc = pcre_dfa_exec(
           re,             /* result of pcre_compile() */
           NULL,           /* we didn't study the pattern */
           "some string",  /* the subject string */
           11,             /* the length of the subject string */
           0,              /* start at offset 0 in the subject */
           0,              /* default options */
           ovector,        /* vector of integers for substring information */
           10,             /* number of elements (NOT size in bytes) */
           wspace,         /* working space vector */
           20);            /* number of elements (NOT size in bytes) */

   Option bits for pcre_dfa_exec()

       The unused bits of the options argument  for  pcre_dfa_exec()  must  be
       zero.  The  only  bits  that  may  be  set are PCRE_ANCHORED, PCRE_NEW-
       LINE_xxx, PCRE_NOTBOL, PCRE_NOTEOL, PCRE_NOTEMPTY,  PCRE_NO_UTF8_CHECK,
       PCRE_PARTIAL, PCRE_DFA_SHORTEST, and PCRE_DFA_RESTART. All but the last
       three of these are the same as for pcre_exec(), so their description is
       not repeated here.

         PCRE_PARTIAL

       This  has  the  same general effect as it does for pcre_exec(), but the
       details  are  slightly  different.  When  PCRE_PARTIAL   is   set   for
       pcre_dfa_exec(),  the  return code PCRE_ERROR_NOMATCH is converted into
       PCRE_ERROR_PARTIAL if the end of the subject  is  reached,  there  have
       been no complete matches, but there is still at least one matching pos-
       sibility. The portion of the string that provided the partial match  is
       set as the first matching string.

         PCRE_DFA_SHORTEST

       Setting  the  PCRE_DFA_SHORTEST option causes the matching algorithm to
       stop as soon as it has found one match. Because of the way the alterna-
       tive  algorithm  works, this is necessarily the shortest possible match
       at the first possible matching point in the subject string.

         PCRE_DFA_RESTART

       When pcre_dfa_exec()  is  called  with  the  PCRE_PARTIAL  option,  and
       returns  a  partial  match, it is possible to call it again, with addi-
       tional subject characters, and have it continue with  the  same  match.
       The  PCRE_DFA_RESTART  option requests this action; when it is set, the
       workspace and wscount options must reference the same vector as  before
       because  data  about  the  match so far is left in them after a partial
       match. There is more discussion of this  facility  in  the  pcrepartial
       documentation.

   Successful returns from pcre_dfa_exec()

       When  pcre_dfa_exec()  succeeds, it may have matched more than one sub-
       string in the subject. Note, however, that all the matches from one run
       of  the  function  start  at the same point in the subject. The shorter
       matches are all initial substrings of the longer matches. For  example,
       if the pattern

         <.*>

       is matched against the string

         This is <something> <something else> <something further> no more

       the three matched strings are

         <something>
         <something> <something else>
         <something> <something else> <something further>

       On  success,  the  yield of the function is a number greater than zero,
       which is the number of matched substrings.  The  substrings  themselves
       are  returned  in  ovector. Each string uses two elements; the first is
       the offset to the start, and the second is the offset to  the  end.  In
       fact,  all  the  strings  have the same start offset. (Space could have
       been saved by giving this only once, but it was decided to retain  some
       compatibility  with  the  way pcre_exec() returns data, even though the
       meaning of the strings is different.)

       The strings are returned in reverse order of length; that is, the long-
       est  matching  string is given first. If there were too many matches to
       fit into ovector, the yield of the function is zero, and the vector  is
       filled with the longest matches.

   Error returns from pcre_dfa_exec()

       The  pcre_dfa_exec()  function returns a negative number when it fails.
       Many of the errors are the same  as  for  pcre_exec(),  and  these  are
       described  above.   There are in addition the following errors that are
       specific to pcre_dfa_exec():

         PCRE_ERROR_DFA_UITEM      (-16)

       This return is given if pcre_dfa_exec() encounters an item in the  pat-
       tern  that  it  does not support, for instance, the use of \C or a back
       reference.

         PCRE_ERROR_DFA_UCOND      (-17)

       This return is given if pcre_dfa_exec()  encounters  a  condition  item
       that  uses  a back reference for the condition, or a test for recursion
       in a specific group. These are not supported.

         PCRE_ERROR_DFA_UMLIMIT    (-18)

       This return is given if pcre_dfa_exec() is called with an  extra  block
       that contains a setting of the match_limit field. This is not supported
       (it is meaningless).

         PCRE_ERROR_DFA_WSSIZE     (-19)

       This return is given if  pcre_dfa_exec()  runs  out  of  space  in  the
       workspace vector.

         PCRE_ERROR_DFA_RECURSE    (-20)

       When  a  recursive subpattern is processed, the matching function calls
       itself recursively, using private vectors for  ovector  and  workspace.
       This  error  is  given  if  the output vector is not large enough. This
       should be extremely rare, as a vector of size 1000 is used.


SEE ALSO

       pcrebuild(3), pcrecallout(3), pcrecpp(3)(3), pcrematching(3),  pcrepar-
       tial(3),  pcreposix(3), pcreprecompile(3), pcresample(3), pcrestack(3).


AUTHOR

       Philip Hazel
       University Computing Service
       Cambridge CB2 3QH, England.


REVISION

       Last updated: 24 April 2007
       Copyright (c) 1997-2007 University of Cambridge.
------------------------------------------------------------------------------


PCRECALLOUT(3)                                                  PCRECALLOUT(3)


NAME
       PCRE - Perl-compatible regular expressions


PCRE CALLOUTS

       int (*pcre_callout)(pcre_callout_block *);

       PCRE provides a feature called "callout", which is a means of temporar-
       ily passing control to the caller of PCRE  in  the  middle  of  pattern
       matching.  The  caller of PCRE provides an external function by putting
       its entry point in the global variable pcre_callout. By  default,  this
       variable contains NULL, which disables all calling out.

       Within  a  regular  expression,  (?C) indicates the points at which the
       external function is to be called.  Different  callout  points  can  be
       identified  by  putting  a number less than 256 after the letter C. The
       default value is zero.  For  example,  this  pattern  has  two  callout
       points:

         (?C1)abc(?C2)def

       If  the  PCRE_AUTO_CALLOUT  option  bit  is  set when pcre_compile() is
       called, PCRE automatically  inserts  callouts,  all  with  number  255,
       before  each  item in the pattern. For example, if PCRE_AUTO_CALLOUT is
       used with the pattern

         A(\d{2}|--)

       it is processed as if it were

       (?C255)A(?C255)((?C255)\d{2}(?C255)|(?C255)-(?C255)-(?C255))(?C255)

       Notice that there is a callout before and after  each  parenthesis  and
       alternation  bar.  Automatic  callouts  can  be  used  for tracking the
       progress of pattern matching. The pcretest command has an  option  that
       sets  automatic callouts; when it is used, the output indicates how the
       pattern is matched. This is useful information when you are  trying  to
       optimize the performance of a particular pattern.


MISSING CALLOUTS

       You  should  be  aware  that,  because of optimizations in the way PCRE
       matches patterns, callouts sometimes do not happen. For example, if the
       pattern is

         ab(?C4)cd

       PCRE knows that any matching string must contain the letter "d". If the
       subject string is "abyz", the lack of "d" means that  matching  doesn't
       ever  start,  and  the  callout is never reached. However, with "abyd",
       though the result is still no match, the callout is obeyed.


THE CALLOUT INTERFACE

       During matching, when PCRE reaches a callout point, the external  func-
       tion  defined by pcre_callout is called (if it is set). This applies to
       both the pcre_exec() and the pcre_dfa_exec()  matching  functions.  The
       only  argument  to  the callout function is a pointer to a pcre_callout
       block. This structure contains the following fields:

         int          version;
         int          callout_number;
         int         *offset_vector;
         const char  *subject;
         int          subject_length;
         int          start_match;
         int          current_position;
         int          capture_top;
         int          capture_last;
         void        *callout_data;
         int          pattern_position;
         int          next_item_length;

       The version field is an integer containing the version  number  of  the
       block  format. The initial version was 0; the current version is 1. The
       version number will change again in future  if  additional  fields  are
       added, but the intention is never to remove any of the existing fields.

       The callout_number field contains the number of the  callout,  as  com-
       piled  into  the pattern (that is, the number after ?C for manual call-
       outs, and 255 for automatically generated callouts).

       The offset_vector field is a pointer to the vector of offsets that  was
       passed   by   the   caller  to  pcre_exec()  or  pcre_dfa_exec().  When
       pcre_exec() is used, the contents can be inspected in order to  extract
       substrings  that  have  been  matched  so  far,  in the same way as for
       extracting substrings after a match has completed. For  pcre_dfa_exec()
       this field is not useful.

       The subject and subject_length fields contain copies of the values that
       were passed to pcre_exec().

       The start_match field contains the offset within the subject  at  which
       the  current match attempt started. If the pattern is not anchored, the
       callout function may be called several times from the same point in the
       pattern for different starting points in the subject.

       The  current_position  field  contains the offset within the subject of
       the current match pointer.

       When the pcre_exec() function is used, the capture_top  field  contains
       one  more than the number of the highest numbered captured substring so
       far. If no substrings have been captured, the value of  capture_top  is
       one.  This  is always the case when pcre_dfa_exec() is used, because it
       does not support captured substrings.

       The capture_last field contains the number of the  most  recently  cap-
       tured  substring. If no substrings have been captured, its value is -1.
       This is always the case when pcre_dfa_exec() is used.

       The callout_data field contains a value that is passed  to  pcre_exec()
       or  pcre_dfa_exec() specifically so that it can be passed back in call-
       outs. It is passed in the pcre_callout field  of  the  pcre_extra  data
       structure.  If  no such data was passed, the value of callout_data in a
       pcre_callout block is NULL. There is a description  of  the  pcre_extra
       structure in the pcreapi documentation.

       The  pattern_position field is present from version 1 of the pcre_call-
       out structure. It contains the offset to the next item to be matched in
       the pattern string.

       The  next_item_length field is present from version 1 of the pcre_call-
       out structure. It contains the length of the next item to be matched in
       the  pattern  string. When the callout immediately precedes an alterna-
       tion bar, a closing parenthesis, or the end of the pattern, the  length
       is  zero.  When the callout precedes an opening parenthesis, the length
       is that of the entire subpattern.

       The pattern_position and next_item_length fields are intended  to  help
       in  distinguishing between different automatic callouts, which all have
       the same callout number. However, they are set for all callouts.


RETURN VALUES

       The external callout function returns an integer to PCRE. If the  value
       is  zero,  matching  proceeds  as  normal. If the value is greater than
       zero, matching fails at the current point, but  the  testing  of  other
       matching possibilities goes ahead, just as if a lookahead assertion had
       failed. If the value is less than zero, the  match  is  abandoned,  and
       pcre_exec() (or pcre_dfa_exec()) returns the negative value.

       Negative   values   should   normally   be   chosen  from  the  set  of
       PCRE_ERROR_xxx values. In particular, PCRE_ERROR_NOMATCH forces a stan-
       dard  "no  match"  failure.   The  error  number  PCRE_ERROR_CALLOUT is
       reserved for use by callout functions; it will never be  used  by  PCRE
       itself.


AUTHOR

       Philip Hazel
       University Computing Service
       Cambridge CB2 3QH, England.


REVISION

       Last updated: 06 March 2007
       Copyright (c) 1997-2007 University of Cambridge.
------------------------------------------------------------------------------


PCRECOMPAT(3)                                                    PCRECOMPAT(3)


NAME
       PCRE - Perl-compatible regular expressions


DIFFERENCES BETWEEN PCRE AND PERL

       This  document describes the differences in the ways that PCRE and Perl
       handle regular expressions. The differences described here  are  mainly
       with  respect  to  Perl 5.8, though PCRE version 7.0 contains some fea-
       tures that are expected to be in the forthcoming Perl 5.10.

       1. PCRE has only a subset of Perl's UTF-8 and Unicode support.  Details
       of  what  it does have are given in the section on UTF-8 support in the
       main pcre page.

       2. PCRE does not allow repeat quantifiers on lookahead assertions. Perl
       permits  them,  but they do not mean what you might think. For example,
       (?!a){3} does not assert that the next three characters are not "a". It
       just asserts that the next character is not "a" three times.

       3.  Capturing  subpatterns  that occur inside negative lookahead asser-
       tions are counted, but their entries in the offsets  vector  are  never
       set.  Perl sets its numerical variables from any such patterns that are
       matched before the assertion fails to match something (thereby succeed-
       ing),  but  only  if the negative lookahead assertion contains just one
       branch.

       4. Though binary zero characters are supported in the  subject  string,
       they are not allowed in a pattern string because it is passed as a nor-
       mal C string, terminated by zero. The escape sequence \0 can be used in
       the pattern to represent a binary zero.

       5.  The  following Perl escape sequences are not supported: \l, \u, \L,
       \U, and \N. In fact these are implemented by Perl's general string-han-
       dling  and are not part of its pattern matching engine. If any of these
       are encountered by PCRE, an error is generated.

       6. The Perl escape sequences \p, \P, and \X are supported only if  PCRE
       is  built  with Unicode character property support. The properties that
       can be tested with \p and \P are limited to the general category  prop-
       erties  such  as  Lu and Nd, script names such as Greek or Han, and the
       derived properties Any and L&.

       7. PCRE does support the \Q...\E escape for quoting substrings. Charac-
       ters  in  between  are  treated as literals. This is slightly different
       from Perl in that $ and @ are  also  handled  as  literals  inside  the
       quotes.  In Perl, they cause variable interpolation (but of course PCRE
       does not have variables). Note the following examples:

           Pattern            PCRE matches      Perl matches

           \Qabc$xyz\E        abc$xyz           abc followed by the
                                                  contents of $xyz
           \Qabc\$xyz\E       abc\$xyz          abc\$xyz
           \Qabc\E\$\Qxyz\E   abc$xyz           abc$xyz

       The \Q...\E sequence is recognized both inside  and  outside  character
       classes.

       8. Fairly obviously, PCRE does not support the (?{code}) and (??{code})
       constructions. However, there is support for recursive  patterns.  This
       is  not available in Perl 5.8, but will be in Perl 5.10. Also, the PCRE
       "callout" feature allows an external function to be called during  pat-
       tern matching. See the pcrecallout documentation for details.

       9.  Subpatterns  that  are  called  recursively or as "subroutines" are
       always treated as atomic groups in  PCRE.  This  is  like  Python,  but
       unlike Perl.

       10.  There are some differences that are concerned with the settings of
       captured strings when part of  a  pattern  is  repeated.  For  example,
       matching  "aba"  against  the  pattern  /^(a(b)?)+$/  in Perl leaves $2
       unset, but in PCRE it is set to "b".

       11. PCRE provides some extensions to the Perl regular expression facil-
       ities.   Perl  5.10  will  include new features that are not in earlier
       versions, some of which (such as named parentheses) have been  in  PCRE
       for some time. This list is with respect to Perl 5.10:

       (a)  Although  lookbehind  assertions  must match fixed length strings,
       each alternative branch of a lookbehind assertion can match a different
       length of string. Perl requires them all to have the same length.

       (b)  If PCRE_DOLLAR_ENDONLY is set and PCRE_MULTILINE is not set, the $
       meta-character matches only at the very end of the string.

       (c) If PCRE_EXTRA is set, a backslash followed by a letter with no spe-
       cial  meaning  is  faulted.  Otherwise,  like  Perl,  the  backslash is
       ignored. (Perl can be made to issue a warning.)

       (d) If PCRE_UNGREEDY is set, the greediness of the  repetition  quanti-
       fiers is inverted, that is, by default they are not greedy, but if fol-
       lowed by a question mark they are.

       (e) PCRE_ANCHORED can be used at matching time to force a pattern to be
       tried only at the first matching position in the subject string.

       (f)  The PCRE_NOTBOL, PCRE_NOTEOL, PCRE_NOTEMPTY, and PCRE_NO_AUTO_CAP-
       TURE options for pcre_exec() have no Perl equivalents.

       (g) The callout facility is PCRE-specific.

       (h) The partial matching facility is PCRE-specific.

       (i) Patterns compiled by PCRE can be saved and re-used at a later time,
       even on different hosts that have the other endianness.

       (j)  The  alternative  matching function (pcre_dfa_exec()) matches in a
       different way and is not Perl-compatible.


AUTHOR

       Philip Hazel
       University Computing Service
       Cambridge CB2 3QH, England.


REVISION

       Last updated: 06 March 2007
       Copyright (c) 1997-2007 University of Cambridge.
------------------------------------------------------------------------------


PCREPATTERN(3)                                                  PCREPATTERN(3)


NAME
       PCRE - Perl-compatible regular expressions


PCRE REGULAR EXPRESSION DETAILS

       The  syntax  and semantics of the regular expressions supported by PCRE
       are described below. Regular expressions are also described in the Perl
       documentation  and  in  a  number  of books, some of which have copious
       examples.  Jeffrey Friedl's "Mastering Regular Expressions",  published
       by  O'Reilly, covers regular expressions in great detail. This descrip-
       tion of PCRE's regular expressions is intended as reference material.

       The original operation of PCRE was on strings of  one-byte  characters.
       However,  there is now also support for UTF-8 character strings. To use
       this, you must build PCRE to  include  UTF-8  support,  and  then  call
       pcre_compile()  with  the  PCRE_UTF8  option.  How this affects pattern
       matching is mentioned in several places below. There is also a  summary
       of  UTF-8  features  in  the  section on UTF-8 support in the main pcre
       page.

       The remainder of this document discusses the  patterns  that  are  sup-
       ported  by  PCRE when its main matching function, pcre_exec(), is used.
       From  release  6.0,   PCRE   offers   a   second   matching   function,
       pcre_dfa_exec(),  which matches using a different algorithm that is not
       Perl-compatible. The advantages and disadvantages  of  the  alternative
       function, and how it differs from the normal function, are discussed in
       the pcrematching page.


CHARACTERS AND METACHARACTERS

       A regular expression is a pattern that is  matched  against  a  subject
       string  from  left  to right. Most characters stand for themselves in a
       pattern, and match the corresponding characters in the  subject.  As  a
       trivial example, the pattern

         The quick brown fox

       matches a portion of a subject string that is identical to itself. When
       caseless matching is specified (the PCRE_CASELESS option), letters  are
       matched  independently  of case. In UTF-8 mode, PCRE always understands
       the concept of case for characters whose values are less than  128,  so
       caseless  matching  is always possible. For characters with higher val-
       ues, the concept of case is supported if PCRE is compiled with  Unicode
       property  support,  but  not  otherwise.   If  you want to use caseless
       matching for characters 128 and above, you must  ensure  that  PCRE  is
       compiled with Unicode property support as well as with UTF-8 support.

       The  power  of  regular  expressions  comes from the ability to include
       alternatives and repetitions in the pattern. These are encoded  in  the
       pattern by the use of metacharacters, which do not stand for themselves
       but instead are interpreted in some special way.

       There are two different sets of metacharacters: those that  are  recog-
       nized  anywhere in the pattern except within square brackets, and those
       that are recognized within square brackets.  Outside  square  brackets,
       the metacharacters are as follows:

         \      general escape character with several uses
         ^      assert start of string (or line, in multiline mode)
         $      assert end of string (or line, in multiline mode)
         .      match any character except newline (by default)
         [      start character class definition
         |      start of alternative branch
         (      start subpattern
         )      end subpattern
         ?      extends the meaning of (
                also 0 or 1 quantifier
                also quantifier minimizer
         *      0 or more quantifier
         +      1 or more quantifier
                also "possessive quantifier"
         {      start min/max quantifier

       Part  of  a  pattern  that is in square brackets is called a "character
       class". In a character class the only metacharacters are:

         \      general escape character
         ^      negate the class, but only if the first character
         -      indicates character range
         [      POSIX character class (only if followed by POSIX
                  syntax)
         ]      terminates the character class

       The following sections describe the use of each of the  metacharacters.


BACKSLASH

       The backslash character has several uses. Firstly, if it is followed by
       a non-alphanumeric character, it takes away any  special  meaning  that
       character  may  have.  This  use  of  backslash  as an escape character
       applies both inside and outside character classes.

       For example, if you want to match a * character, you write  \*  in  the
       pattern.   This  escaping  action  applies whether or not the following
       character would otherwise be interpreted as a metacharacter, so  it  is
       always  safe  to  precede  a non-alphanumeric with backslash to specify
       that it stands for itself. In particular, if you want to match a  back-
       slash, you write \\.

       If  a  pattern is compiled with the PCRE_EXTENDED option, whitespace in
       the pattern (other than in a character class) and characters between  a
       # outside a character class and the next newline are ignored. An escap-
       ing backslash can be used to include a whitespace  or  #  character  as
       part of the pattern.

       If  you  want  to remove the special meaning from a sequence of charac-
       ters, you can do so by putting them between \Q and \E. This is  differ-
       ent  from  Perl  in  that  $  and  @ are handled as literals in \Q...\E
       sequences in PCRE, whereas in Perl, $ and @ cause  variable  interpola-
       tion. Note the following examples:

         Pattern            PCRE matches   Perl matches

         \Qabc$xyz\E        abc$xyz        abc followed by the
                                             contents of $xyz
         \Qabc\$xyz\E       abc\$xyz       abc\$xyz
         \Qabc\E\$\Qxyz\E   abc$xyz        abc$xyz

       The  \Q...\E  sequence  is recognized both inside and outside character
       classes.

   Non-printing characters

       A second use of backslash provides a way of encoding non-printing char-
       acters  in patterns in a visible manner. There is no restriction on the
       appearance of non-printing characters, apart from the binary zero  that
       terminates  a  pattern,  but  when  a pattern is being prepared by text
       editing, it is usually easier  to  use  one  of  the  following  escape
       sequences than the binary character it represents:

         \a        alarm, that is, the BEL character (hex 07)
         \cx       "control-x", where x is any character
         \e        escape (hex 1B)
         \f        formfeed (hex 0C)
         \n        newline (hex 0A)
         \r        carriage return (hex 0D)
         \t        tab (hex 09)
         \ddd      character with octal code ddd, or backreference
         \xhh      character with hex code hh
         \x{hhh..} character with hex code hhh..

       The  precise  effect of \cx is as follows: if x is a lower case letter,
       it is converted to upper case. Then bit 6 of the character (hex 40)  is
       inverted.   Thus  \cz becomes hex 1A, but \c{ becomes hex 3B, while \c;
       becomes hex 7B.

       After \x, from zero to two hexadecimal digits are read (letters can  be
       in  upper  or  lower case). Any number of hexadecimal digits may appear
       between \x{ and }, but the value of the character  code  must  be  less
       than 256 in non-UTF-8 mode, and less than 2**31 in UTF-8 mode (that is,
       the maximum hexadecimal value is 7FFFFFFF). If  characters  other  than
       hexadecimal  digits  appear between \x{ and }, or if there is no termi-
       nating }, this form of escape is not recognized.  Instead, the  initial
       \x will be interpreted as a basic hexadecimal escape, with no following
       digits, giving a character whose value is zero.

       Characters whose value is less than 256 can be defined by either of the
       two  syntaxes  for  \x. There is no difference in the way they are han-
       dled. For example, \xdc is exactly the same as \x{dc}.

       After \0 up to two further octal digits are read. If  there  are  fewer
       than  two  digits,  just  those  that  are  present  are used. Thus the
       sequence \0\x\07 specifies two binary zeros followed by a BEL character
       (code  value 7). Make sure you supply two digits after the initial zero
       if the pattern character that follows is itself an octal digit.

       The handling of a backslash followed by a digit other than 0 is compli-
       cated.  Outside a character class, PCRE reads it and any following dig-
       its as a decimal number. If the number is less than  10,  or  if  there
       have been at least that many previous capturing left parentheses in the
       expression, the entire  sequence  is  taken  as  a  back  reference.  A
       description  of how this works is given later, following the discussion
       of parenthesized subpatterns.

       Inside a character class, or if the decimal number is  greater  than  9
       and  there have not been that many capturing subpatterns, PCRE re-reads
       up to three octal digits following the backslash, and uses them to gen-
       erate  a data character. Any subsequent digits stand for themselves. In
       non-UTF-8 mode, the value of a character specified  in  octal  must  be
       less  than  \400.  In  UTF-8 mode, values up to \777 are permitted. For
       example:

         \040   is another way of writing a space
         \40    is the same, provided there are fewer than 40
                   previous capturing subpatterns
         \7     is always a back reference
         \11    might be a back reference, or another way of
                   writing a tab
         \011   is always a tab
         \0113  is a tab followed by the character "3"
         \113   might be a back reference, otherwise the
                   character with octal code 113
         \377   might be a back reference, otherwise
                   the byte consisting entirely of 1 bits
         \81    is either a back reference, or a binary zero
                   followed by the two characters "8" and "1"

       Note that octal values of 100 or greater must not be  introduced  by  a
       leading zero, because no more than three octal digits are ever read.

       All the sequences that define a single character value can be used both
       inside and outside character classes. In addition, inside  a  character
       class,  the  sequence \b is interpreted as the backspace character (hex
       08), and the sequences \R and \X are interpreted as the characters  "R"
       and  "X", respectively. Outside a character class, these sequences have
       different meanings (see below).

   Absolute and relative back references

       The sequence \g followed by a positive or negative  number,  optionally
       enclosed  in  braces,  is  an absolute or relative back reference. Back
       references are discussed later, following the discussion  of  parenthe-
       sized subpatterns.

   Generic character types

       Another use of backslash is for specifying generic character types. The
       following are always recognized:

         \d     any decimal digit
         \D     any character that is not a decimal digit
         \s     any whitespace character
         \S     any character that is not a whitespace character
         \w     any "word" character
         \W     any "non-word" character

       Each pair of escape sequences partitions the complete set of characters
       into  two disjoint sets. Any given character matches one, and only one,
       of each pair.

       These character type sequences can appear both inside and outside char-
       acter  classes.  They each match one character of the appropriate type.
       If the current matching point is at the end of the subject string,  all
       of them fail, since there is no character to match.

       For  compatibility  with Perl, \s does not match the VT character (code
       11).  This makes it different from the the POSIX "space" class. The  \s
       characters  are  HT (9), LF (10), FF (12), CR (13), and space (32). (If
       "use locale;" is included in a Perl script, \s may match the VT charac-
       ter. In PCRE, it never does.)

       A "word" character is an underscore or any character less than 256 that
       is a letter or digit. The definition of  letters  and  digits  is  con-
       trolled  by PCRE's low-valued character tables, and may vary if locale-
       specific matching is taking place (see "Locale support" in the  pcreapi
       page).  For  example,  in  a French locale such as "fr_FR" in Unix-like
       systems, or "french" in Windows, some character codes greater than  128
       are used for accented letters, and these are matched by \w.

       In  UTF-8 mode, characters with values greater than 128 never match \d,
       \s, or \w, and always match \D, \S, and \W. This is true even when Uni-
       code  character  property support is available. The use of locales with
       Unicode is discouraged.

   Newline sequences

       Outside a character class, the escape sequence \R matches  any  Unicode
       newline sequence. This is an extension to Perl. In non-UTF-8 mode \R is
       equivalent to the following:

         (?>\r\n|\n|\x0b|\f|\r|\x85)

       This is an example of an "atomic group", details  of  which  are  given
       below.  This particular group matches either the two-character sequence
       CR followed by LF, or  one  of  the  single  characters  LF  (linefeed,
       U+000A), VT (vertical tab, U+000B), FF (formfeed, U+000C), CR (carriage
       return, U+000D), or NEL (next line, U+0085). The two-character sequence
       is treated as a single unit that cannot be split.

       In  UTF-8  mode, two additional characters whose codepoints are greater
       than 255 are added: LS (line separator, U+2028) and PS (paragraph sepa-
       rator,  U+2029).   Unicode character property support is not needed for
       these characters to be recognized.

       Inside a character class, \R matches the letter "R".

   Unicode character properties

       When PCRE is built with Unicode character property support, three addi-
       tional  escape  sequences  to  match character properties are available
       when UTF-8 mode is selected. They are:

         \p{xx}   a character with the xx property
         \P{xx}   a character without the xx property
         \X       an extended Unicode sequence

       The property names represented by xx above are limited to  the  Unicode
       script names, the general category properties, and "Any", which matches
       any character (including newline). Other properties such as "InMusical-
       Symbols"  are  not  currently supported by PCRE. Note that \P{Any} does
       not match any characters, so always causes a match failure.

       Sets of Unicode characters are defined as belonging to certain scripts.
       A  character from one of these sets can be matched using a script name.
       For example:

         \p{Greek}
         \P{Han}

       Those that are not part of an identified script are lumped together  as
       "Common". The current list of scripts is:

       Arabic,  Armenian,  Balinese,  Bengali,  Bopomofo,  Braille,  Buginese,
       Buhid,  Canadian_Aboriginal,  Cherokee,  Common,   Coptic,   Cuneiform,
       Cypriot, Cyrillic, Deseret, Devanagari, Ethiopic, Georgian, Glagolitic,
       Gothic, Greek, Gujarati, Gurmukhi, Han, Hangul, Hanunoo, Hebrew,  Hira-
       gana,  Inherited,  Kannada,  Katakana,  Kharoshthi,  Khmer, Lao, Latin,
       Limbu,  Linear_B,  Malayalam,  Mongolian,  Myanmar,  New_Tai_Lue,  Nko,
       Ogham,  Old_Italic,  Old_Persian, Oriya, Osmanya, Phags_Pa, Phoenician,
       Runic,  Shavian,  Sinhala,  Syloti_Nagri,  Syriac,  Tagalog,  Tagbanwa,
       Tai_Le, Tamil, Telugu, Thaana, Thai, Tibetan, Tifinagh, Ugaritic, Yi.

       Each  character has exactly one general category property, specified by
       a two-letter abbreviation. For compatibility with Perl, negation can be
       specified  by  including a circumflex between the opening brace and the
       property name. For example, \p{^Lu} is the same as \P{Lu}.

       If only one letter is specified with \p or \P, it includes all the gen-
       eral  category properties that start with that letter. In this case, in
       the absence of negation, the curly brackets in the escape sequence  are
       optional; these two examples have the same effect:

         \p{L}
         \pL

       The following general category property codes are supported:

         C     Other
         Cc    Control
         Cf    Format
         Cn    Unassigned
         Co    Private use
         Cs    Surrogate

         L     Letter
         Ll    Lower case letter
         Lm    Modifier letter
         Lo    Other letter
         Lt    Title case letter
         Lu    Upper case letter

         M     Mark
         Mc    Spacing mark
         Me    Enclosing mark
         Mn    Non-spacing mark

         N     Number
         Nd    Decimal number
         Nl    Letter number
         No    Other number

         P     Punctuation
         Pc    Connector punctuation
         Pd    Dash punctuation
         Pe    Close punctuation
         Pf    Final punctuation
         Pi    Initial punctuation
         Po    Other punctuation
         Ps    Open punctuation

         S     Symbol
         Sc    Currency symbol
         Sk    Modifier symbol
         Sm    Mathematical symbol
         So    Other symbol

         Z     Separator
         Zl    Line separator
         Zp    Paragraph separator
         Zs    Space separator

       The  special property L& is also supported: it matches a character that
       has the Lu, Ll, or Lt property, in other words, a letter  that  is  not
       classified as a modifier or "other".

       The  long  synonyms  for  these  properties that Perl supports (such as
       \p{Letter}) are not supported by PCRE, nor is it  permitted  to  prefix
       any of these properties with "Is".

       No character that is in the Unicode table has the Cn (unassigned) prop-
       erty.  Instead, this property is assumed for any code point that is not
       in the Unicode table.

       Specifying  caseless  matching  does not affect these escape sequences.
       For example, \p{Lu} always matches only upper case letters.

       The \X escape matches any number of Unicode  characters  that  form  an
       extended Unicode sequence. \X is equivalent to

         (?>\PM\pM*)

       That  is,  it matches a character without the "mark" property, followed
       by zero or more characters with the "mark"  property,  and  treats  the
       sequence  as  an  atomic group (see below).  Characters with the "mark"
       property are typically accents that affect the preceding character.

       Matching characters by Unicode property is not fast, because  PCRE  has
       to  search  a  structure  that  contains data for over fifteen thousand
       characters. That is why the traditional escape sequences such as \d and
       \w do not use Unicode properties in PCRE.

   Simple assertions

       The  final use of backslash is for certain simple assertions. An asser-
       tion specifies a condition that has to be met at a particular point  in
       a  match, without consuming any characters from the subject string. The
       use of subpatterns for more complicated assertions is described  below.
       The backslashed assertions are:

         \b     matches at a word boundary
         \B     matches when not at a word boundary
         \A     matches at the start of the subject
         \Z     matches at the end of the subject
                 also matches before a newline at the end of the subject
         \z     matches only at the end of the subject
         \G     matches at the first matching position in the subject

       These  assertions may not appear in character classes (but note that \b
       has a different meaning, namely the backspace character, inside a char-
       acter class).

       A  word  boundary is a position in the subject string where the current
       character and the previous character do not both match \w or  \W  (i.e.
       one  matches  \w  and the other matches \W), or the start or end of the
       string if the first or last character matches \w, respectively.

       The \A, \Z, and \z assertions differ from  the  traditional  circumflex
       and dollar (described in the next section) in that they only ever match
       at the very start and end of the subject string, whatever  options  are
       set.  Thus,  they are independent of multiline mode. These three asser-
       tions are not affected by the PCRE_NOTBOL or PCRE_NOTEOL options, which
       affect  only the behaviour of the circumflex and dollar metacharacters.
       However, if the startoffset argument of pcre_exec() is non-zero,  indi-
       cating that matching is to start at a point other than the beginning of
       the subject, \A can never match. The difference between \Z  and  \z  is
       that \Z matches before a newline at the end of the string as well as at
       the very end, whereas \z matches only at the end.

       The \G assertion is true only when the current matching position is  at
       the  start point of the match, as specified by the startoffset argument
       of pcre_exec(). It differs from \A when the  value  of  startoffset  is
       non-zero.  By calling pcre_exec() multiple times with appropriate argu-
       ments, you can mimic Perl's /g option, and it is in this kind of imple-
       mentation where \G can be useful.

       Note,  however,  that  PCRE's interpretation of \G, as the start of the
       current match, is subtly different from Perl's, which defines it as the
       end  of  the  previous  match. In Perl, these can be different when the
       previously matched string was empty. Because PCRE does just  one  match
       at a time, it cannot reproduce this behaviour.

       If  all  the alternatives of a pattern begin with \G, the expression is
       anchored to the starting match position, and the "anchored" flag is set
       in the compiled regular expression.


CIRCUMFLEX AND DOLLAR

       Outside a character class, in the default matching mode, the circumflex
       character is an assertion that is true only  if  the  current  matching
       point  is  at the start of the subject string. If the startoffset argu-
       ment of pcre_exec() is non-zero, circumflex  can  never  match  if  the
       PCRE_MULTILINE  option  is  unset. Inside a character class, circumflex
       has an entirely different meaning (see below).

       Circumflex need not be the first character of the pattern if  a  number
       of  alternatives are involved, but it should be the first thing in each
       alternative in which it appears if the pattern is ever  to  match  that
       branch.  If all possible alternatives start with a circumflex, that is,
       if the pattern is constrained to match only at the start  of  the  sub-
       ject,  it  is  said  to be an "anchored" pattern. (There are also other
       constructs that can cause a pattern to be anchored.)

       A dollar character is an assertion that is true  only  if  the  current
       matching  point  is  at  the  end of the subject string, or immediately
       before a newline at the end of the string (by default). Dollar need not
       be  the  last  character of the pattern if a number of alternatives are
       involved, but it should be the last item in  any  branch  in  which  it
       appears. Dollar has no special meaning in a character class.

       The  meaning  of  dollar  can be changed so that it matches only at the
       very end of the string, by setting the  PCRE_DOLLAR_ENDONLY  option  at
       compile time. This does not affect the \Z assertion.

       The meanings of the circumflex and dollar characters are changed if the
       PCRE_MULTILINE option is set. When  this  is  the  case,  a  circumflex
       matches  immediately after internal newlines as well as at the start of
       the subject string. It does not match after a  newline  that  ends  the
       string.  A dollar matches before any newlines in the string, as well as
       at the very end, when PCRE_MULTILINE is set. When newline is  specified
       as  the  two-character  sequence CRLF, isolated CR and LF characters do
       not indicate newlines.

       For example, the pattern /^abc$/ matches the subject string  "def\nabc"
       (where  \n  represents a newline) in multiline mode, but not otherwise.
       Consequently, patterns that are anchored in single  line  mode  because
       all  branches  start  with  ^ are not anchored in multiline mode, and a
       match for circumflex is  possible  when  the  startoffset  argument  of
       pcre_exec()  is  non-zero. The PCRE_DOLLAR_ENDONLY option is ignored if
       PCRE_MULTILINE is set.

       Note that the sequences \A, \Z, and \z can be used to match  the  start
       and  end of the subject in both modes, and if all branches of a pattern
       start with \A it is always anchored, whether or not  PCRE_MULTILINE  is
       set.


FULL STOP (PERIOD, DOT)

       Outside a character class, a dot in the pattern matches any one charac-
       ter in the subject string except (by default) a character  that  signi-
       fies  the  end  of  a line. In UTF-8 mode, the matched character may be
       more than one byte long.

       When a line ending is defined as a single character, dot never  matches
       that  character; when the two-character sequence CRLF is used, dot does
       not match CR if it is immediately followed  by  LF,  but  otherwise  it
       matches  all characters (including isolated CRs and LFs). When any Uni-
       code line endings are being recognized, dot does not match CR or LF  or
       any of the other line ending characters.

       The  behaviour  of  dot  with regard to newlines can be changed. If the
       PCRE_DOTALL option is set, a dot matches  any  one  character,  without
       exception. If the two-character sequence CRLF is present in the subject
       string, it takes two dots to match it.

       The handling of dot is entirely independent of the handling of  circum-
       flex  and  dollar,  the  only relationship being that they both involve
       newlines. Dot has no special meaning in a character class.


MATCHING A SINGLE BYTE

       Outside a character class, the escape sequence \C matches any one byte,
       both  in  and  out  of  UTF-8 mode. Unlike a dot, it always matches any
       line-ending characters. The feature is provided in  Perl  in  order  to
       match  individual bytes in UTF-8 mode. Because it breaks up UTF-8 char-
       acters into individual bytes, what remains in the string may be a  mal-
       formed  UTF-8  string.  For this reason, the \C escape sequence is best
       avoided.

       PCRE does not allow \C to appear in  lookbehind  assertions  (described
       below),  because  in UTF-8 mode this would make it impossible to calcu-
       late the length of the lookbehind.


SQUARE BRACKETS AND CHARACTER CLASSES

       An opening square bracket introduces a character class, terminated by a
       closing square bracket. A closing square bracket on its own is not spe-
       cial. If a closing square bracket is required as a member of the class,
       it  should  be  the first data character in the class (after an initial
       circumflex, if present) or escaped with a backslash.

       A character class matches a single character in the subject.  In  UTF-8
       mode,  the character may occupy more than one byte. A matched character
       must be in the set of characters defined by the class, unless the first
       character  in  the  class definition is a circumflex, in which case the
       subject character must not be in the set defined by  the  class.  If  a
       circumflex  is actually required as a member of the class, ensure it is
       not the first character, or escape it with a backslash.

       For example, the character class [aeiou] matches any lower case  vowel,
       while  [^aeiou]  matches  any character that is not a lower case vowel.
       Note that a circumflex is just a convenient notation for specifying the
       characters  that  are in the class by enumerating those that are not. A
       class that starts with a circumflex is not an assertion: it still  con-
       sumes  a  character  from the subject string, and therefore it fails if
       the current pointer is at the end of the string.

       In UTF-8 mode, characters with values greater than 255 can be  included
       in  a  class as a literal string of bytes, or by using the \x{ escaping
       mechanism.

       When caseless matching is set, any letters in a  class  represent  both
       their  upper  case  and lower case versions, so for example, a caseless
       [aeiou] matches "A" as well as "a", and a caseless  [^aeiou]  does  not
       match  "A", whereas a caseful version would. In UTF-8 mode, PCRE always
       understands the concept of case for characters whose  values  are  less
       than  128, so caseless matching is always possible. For characters with
       higher values, the concept of case is supported  if  PCRE  is  compiled
       with  Unicode  property support, but not otherwise.  If you want to use
       caseless matching for characters 128 and above, you  must  ensure  that
       PCRE  is  compiled  with Unicode property support as well as with UTF-8
       support.

       Characters that might indicate line breaks are  never  treated  in  any
       special  way  when  matching  character  classes,  whatever line-ending
       sequence is in  use,  and  whatever  setting  of  the  PCRE_DOTALL  and
       PCRE_MULTILINE options is used. A class such as [^a] always matches one
       of these characters.

       The minus (hyphen) character can be used to specify a range of  charac-
       ters  in  a  character  class.  For  example,  [d-m] matches any letter
       between d and m, inclusive. If a  minus  character  is  required  in  a
       class,  it  must  be  escaped  with a backslash or appear in a position
       where it cannot be interpreted as indicating a range, typically as  the
       first or last character in the class.

       It is not possible to have the literal character "]" as the end charac-
       ter of a range. A pattern such as [W-]46] is interpreted as a class  of
       two  characters ("W" and "-") followed by a literal string "46]", so it
       would match "W46]" or "-46]". However, if the "]"  is  escaped  with  a
       backslash  it is interpreted as the end of range, so [W-\]46] is inter-
       preted as a class containing a range followed by two other  characters.
       The  octal or hexadecimal representation of "]" can also be used to end
       a range.

       Ranges operate in the collating sequence of character values. They  can
       also   be  used  for  characters  specified  numerically,  for  example
       [\000-\037]. In UTF-8 mode, ranges can include characters whose  values
       are greater than 255, for example [\x{100}-\x{2ff}].

       If a range that includes letters is used when caseless matching is set,
       it matches the letters in either case. For example, [W-c] is equivalent
       to  [][\\^_`wxyzabc],  matched  caselessly,  and  in non-UTF-8 mode, if
       character tables for a French locale are in  use,  [\xc8-\xcb]  matches
       accented  E  characters in both cases. In UTF-8 mode, PCRE supports the
       concept of case for characters with values greater than 128  only  when
       it is compiled with Unicode property support.

       The  character types \d, \D, \p, \P, \s, \S, \w, and \W may also appear
       in a character class, and add the characters that  they  match  to  the
       class. For example, [\dABCDEF] matches any hexadecimal digit. A circum-
       flex can conveniently be used with the upper case  character  types  to
       specify  a  more  restricted  set of characters than the matching lower
       case type. For example, the class [^\W_] matches any letter  or  digit,
       but not underscore.

       The  only  metacharacters  that are recognized in character classes are
       backslash, hyphen (only where it can be  interpreted  as  specifying  a
       range),  circumflex  (only  at the start), opening square bracket (only
       when it can be interpreted as introducing a POSIX class name - see  the
       next  section),  and  the  terminating closing square bracket. However,
       escaping other non-alphanumeric characters does no harm.


POSIX CHARACTER CLASSES

       Perl supports the POSIX notation for character classes. This uses names
       enclosed  by  [: and :] within the enclosing square brackets. PCRE also
       supports this notation. For example,

         [01[:alpha:]%]

       matches "0", "1", any alphabetic character, or "%". The supported class
       names are

         alnum    letters and digits
         alpha    letters
         ascii    character codes 0 - 127
         blank    space or tab only
         cntrl    control characters
         digit    decimal digits (same as \d)
         graph    printing characters, excluding space
         lower    lower case letters
         print    printing characters, including space
         punct    printing characters, excluding letters and digits
         space    white space (not quite the same as \s)
         upper    upper case letters
         word     "word" characters (same as \w)
         xdigit   hexadecimal digits

       The  "space" characters are HT (9), LF (10), VT (11), FF (12), CR (13),
       and space (32). Notice that this list includes the VT  character  (code
       11). This makes "space" different to \s, which does not include VT (for
       Perl compatibility).

       The name "word" is a Perl extension, and "blank"  is  a  GNU  extension
       from  Perl  5.8. Another Perl extension is negation, which is indicated
       by a ^ character after the colon. For example,

         [12[:^digit:]]

       matches "1", "2", or any non-digit. PCRE (and Perl) also recognize  the
       POSIX syntax [.ch.] and [=ch=] where "ch" is a "collating element", but
       these are not supported, and an error is given if they are encountered.

       In UTF-8 mode, characters with values greater than 128 do not match any
       of the POSIX character classes.


VERTICAL BAR

       Vertical bar characters are used to separate alternative patterns.  For
       example, the pattern

         gilbert|sullivan

       matches  either "gilbert" or "sullivan". Any number of alternatives may
       appear, and an empty  alternative  is  permitted  (matching  the  empty
       string). The matching process tries each alternative in turn, from left
       to right, and the first one that succeeds is used. If the  alternatives
       are  within a subpattern (defined below), "succeeds" means matching the
       rest of the main pattern as well as the alternative in the  subpattern.


INTERNAL OPTION SETTING

       The  settings  of  the  PCRE_CASELESS, PCRE_MULTILINE, PCRE_DOTALL, and
       PCRE_EXTENDED options can be changed  from  within  the  pattern  by  a
       sequence  of  Perl  option  letters  enclosed between "(?" and ")". The
       option letters are

         i  for PCRE_CASELESS
         m  for PCRE_MULTILINE
         s  for PCRE_DOTALL
         x  for PCRE_EXTENDED

       For example, (?im) sets caseless, multiline matching. It is also possi-
       ble to unset these options by preceding the letter with a hyphen, and a
       combined setting and unsetting such as (?im-sx), which sets  PCRE_CASE-
       LESS  and PCRE_MULTILINE while unsetting PCRE_DOTALL and PCRE_EXTENDED,
       is also permitted. If a  letter  appears  both  before  and  after  the
       hyphen, the option is unset.

       When  an option change occurs at top level (that is, not inside subpat-
       tern parentheses), the change applies to the remainder of  the  pattern
       that follows.  If the change is placed right at the start of a pattern,
       PCRE extracts it into the global options (and it will therefore show up
       in data extracted by the pcre_fullinfo() function).

       An  option  change  within a subpattern (see below for a description of
       subpatterns) affects only that part of the current pattern that follows
       it, so

         (a(?i)b)c

       matches abc and aBc and no other strings (assuming PCRE_CASELESS is not
       used).  By this means, options can be made to have  different  settings
       in  different parts of the pattern. Any changes made in one alternative
       do carry on into subsequent branches within the  same  subpattern.  For
       example,

         (a(?i)b|c)

       matches  "ab",  "aB",  "c",  and "C", even though when matching "C" the
       first branch is abandoned before the option setting.  This  is  because
       the  effects  of option settings happen at compile time. There would be
       some very weird behaviour otherwise.

       The PCRE-specific options PCRE_DUPNAMES, PCRE_UNGREEDY, and  PCRE_EXTRA
       can  be changed in the same way as the Perl-compatible options by using
       the characters J, U and X respectively.


SUBPATTERNS

       Subpatterns are delimited by parentheses (round brackets), which can be
       nested.  Turning part of a pattern into a subpattern does two things:

       1. It localizes a set of alternatives. For example, the pattern

         cat(aract|erpillar|)

       matches  one  of the words "cat", "cataract", or "caterpillar". Without
       the parentheses, it would match  "cataract",  "erpillar"  or  an  empty
       string.

       2.  It  sets  up  the  subpattern as a capturing subpattern. This means
       that, when the whole pattern  matches,  that  portion  of  the  subject
       string that matched the subpattern is passed back to the caller via the
       ovector argument of pcre_exec(). Opening parentheses are  counted  from
       left  to  right  (starting  from 1) to obtain numbers for the capturing
       subpatterns.

       For example, if the string "the red king" is matched against  the  pat-
       tern

         the ((red|white) (king|queen))

       the captured substrings are "red king", "red", and "king", and are num-
       bered 1, 2, and 3, respectively.

       The fact that plain parentheses fulfil  two  functions  is  not  always
       helpful.   There are often times when a grouping subpattern is required
       without a capturing requirement. If an opening parenthesis is  followed
       by  a question mark and a colon, the subpattern does not do any captur-
       ing, and is not counted when computing the  number  of  any  subsequent
       capturing  subpatterns. For example, if the string "the white queen" is
       matched against the pattern

         the ((?:red|white) (king|queen))

       the captured substrings are "white queen" and "queen", and are numbered
       1 and 2. The maximum number of capturing subpatterns is 65535.

       As  a  convenient shorthand, if any option settings are required at the
       start of a non-capturing subpattern,  the  option  letters  may  appear
       between the "?" and the ":". Thus the two patterns

         (?i:saturday|sunday)
         (?:(?i)saturday|sunday)

       match exactly the same set of strings. Because alternative branches are
       tried from left to right, and options are not reset until  the  end  of
       the  subpattern is reached, an option setting in one branch does affect
       subsequent branches, so the above patterns match "SUNDAY"  as  well  as
       "Saturday".


NAMED SUBPATTERNS

       Identifying  capturing  parentheses  by number is simple, but it can be
       very hard to keep track of the numbers in complicated  regular  expres-
       sions.  Furthermore,  if  an  expression  is  modified, the numbers may
       change. To help with this difficulty, PCRE supports the naming of  sub-
       patterns. This feature was not added to Perl until release 5.10. Python
       had the feature earlier, and PCRE introduced it at release  4.0,  using
       the  Python syntax. PCRE now supports both the Perl and the Python syn-
       tax.

       In PCRE, a subpattern can be named in one of three  ways:  (?<name>...)
       or  (?'name'...)  as in Perl, or (?P<name>...) as in Python. References
       to capturing parentheses from other parts of the pattern, such as back-
       references,  recursion,  and conditions, can be made by name as well as
       by number.

       Names consist of up to  32  alphanumeric  characters  and  underscores.
       Named  capturing  parentheses  are  still  allocated numbers as well as
       names, exactly as if the names were not present. The PCRE API  provides
       function calls for extracting the name-to-number translation table from
       a compiled pattern. There is also a convenience function for extracting
       a captured substring by name.

       By  default, a name must be unique within a pattern, but it is possible
       to relax this constraint by setting the PCRE_DUPNAMES option at compile
       time.  This  can  be useful for patterns where only one instance of the
       named parentheses can match. Suppose you want to match the  name  of  a
       weekday,  either as a 3-letter abbreviation or as the full name, and in
       both cases you want to extract the abbreviation. This pattern (ignoring
       the line breaks) does the job:

         (?<DN>Mon|Fri|Sun)(?:day)?|
         (?<DN>Tue)(?:sday)?|
         (?<DN>Wed)(?:nesday)?|
         (?<DN>Thu)(?:rsday)?|
         (?<DN>Sat)(?:urday)?

       There  are  five capturing substrings, but only one is ever set after a
       match.  The convenience  function  for  extracting  the  data  by  name
       returns  the  substring  for  the first (and in this example, the only)
       subpattern of that name that matched.  This  saves  searching  to  find
       which  numbered  subpattern  it  was. If you make a reference to a non-
       unique named subpattern from elsewhere in the  pattern,  the  one  that
       corresponds  to  the  lowest number is used. For further details of the
       interfaces for handling named subpatterns, see the  pcreapi  documenta-
       tion.


REPETITION

       Repetition  is  specified  by  quantifiers, which can follow any of the
       following items:

         a literal data character
         the dot metacharacter
         the \C escape sequence
         the \X escape sequence (in UTF-8 mode with Unicode properties)
         the \R escape sequence
         an escape such as \d that matches a single character
         a character class
         a back reference (see next section)
         a parenthesized subpattern (unless it is an assertion)

       The general repetition quantifier specifies a minimum and maximum  num-
       ber  of  permitted matches, by giving the two numbers in curly brackets
       (braces), separated by a comma. The numbers must be  less  than  65536,
       and the first must be less than or equal to the second. For example:

         z{2,4}

       matches  "zz",  "zzz",  or  "zzzz". A closing brace on its own is not a
       special character. If the second number is omitted, but  the  comma  is
       present,  there  is  no upper limit; if the second number and the comma
       are both omitted, the quantifier specifies an exact number of  required
       matches. Thus

         [aeiou]{3,}

       matches at least 3 successive vowels, but may match many more, while

         \d{8}

       matches  exactly  8  digits. An opening curly bracket that appears in a
       position where a quantifier is not allowed, or one that does not  match
       the  syntax of a quantifier, is taken as a literal character. For exam-
       ple, {,6} is not a quantifier, but a literal string of four characters.

       In  UTF-8  mode,  quantifiers  apply to UTF-8 characters rather than to
       individual bytes. Thus, for example, \x{100}{2} matches two UTF-8 char-
       acters, each of which is represented by a two-byte sequence. Similarly,
       when Unicode property support is available, \X{3} matches three Unicode
       extended  sequences,  each of which may be several bytes long (and they
       may be of different lengths).

       The quantifier {0} is permitted, causing the expression to behave as if
       the previous item and the quantifier were not present.

       For  convenience, the three most common quantifiers have single-charac-
       ter abbreviations:

         *    is equivalent to {0,}
         +    is equivalent to {1,}
         ?    is equivalent to {0,1}

       It is possible to construct infinite loops by  following  a  subpattern
       that can match no characters with a quantifier that has no upper limit,
       for example:

         (a?)*

       Earlier versions of Perl and PCRE used to give an error at compile time
       for  such  patterns. However, because there are cases where this can be
       useful, such patterns are now accepted, but if any  repetition  of  the
       subpattern  does in fact match no characters, the loop is forcibly bro-
       ken.

       By default, the quantifiers are "greedy", that is, they match  as  much
       as  possible  (up  to  the  maximum number of permitted times), without
       causing the rest of the pattern to fail. The classic example  of  where
       this gives problems is in trying to match comments in C programs. These
       appear between /* and */ and within the comment,  individual  *  and  /
       characters  may  appear. An attempt to match C comments by applying the
       pattern

         /\*.*\*/

       to the string

         /* first comment */  not comment  /* second comment */

       fails, because it matches the entire string owing to the greediness  of
       the .*  item.

       However,  if  a quantifier is followed by a question mark, it ceases to
       be greedy, and instead matches the minimum number of times possible, so
       the pattern

         /\*.*?\*/

       does  the  right  thing with the C comments. The meaning of the various
       quantifiers is not otherwise changed,  just  the  preferred  number  of
       matches.   Do  not  confuse this use of question mark with its use as a
       quantifier in its own right. Because it has two uses, it can  sometimes
       appear doubled, as in

         \d??\d

       which matches one digit by preference, but can match two if that is the
       only way the rest of the pattern matches.

       If the PCRE_UNGREEDY option is set (an option that is not available  in
       Perl),  the  quantifiers are not greedy by default, but individual ones
       can be made greedy by following them with a  question  mark.  In  other
       words, it inverts the default behaviour.

       When  a  parenthesized  subpattern  is quantified with a minimum repeat
       count that is greater than 1 or with a limited maximum, more memory  is
       required  for  the  compiled  pattern, in proportion to the size of the
       minimum or maximum.

       If a pattern starts with .* or .{0,} and the PCRE_DOTALL option (equiv-
       alent  to  Perl's  /s) is set, thus allowing the dot to match newlines,
       the pattern is implicitly anchored, because whatever  follows  will  be
       tried  against every character position in the subject string, so there
       is no point in retrying the overall match at  any  position  after  the
       first.  PCRE  normally treats such a pattern as though it were preceded
       by \A.

       In cases where it is known that the subject  string  contains  no  new-
       lines,  it  is  worth setting PCRE_DOTALL in order to obtain this opti-
       mization, or alternatively using ^ to indicate anchoring explicitly.

       However, there is one situation where the optimization cannot be  used.
       When  .*   is  inside  capturing  parentheses that are the subject of a
       backreference elsewhere in the pattern, a match at the start  may  fail
       where a later one succeeds. Consider, for example:

         (.*)abc\1

       If  the subject is "xyz123abc123" the match point is the fourth charac-
       ter. For this reason, such a pattern is not implicitly anchored.

       When a capturing subpattern is repeated, the value captured is the sub-
       string that matched the final iteration. For example, after

         (tweedle[dume]{3}\s*)+

       has matched "tweedledum tweedledee" the value of the captured substring
       is "tweedledee". However, if there are  nested  capturing  subpatterns,
       the  corresponding captured values may have been set in previous itera-
       tions. For example, after

         /(a|(b))+/

       matches "aba" the value of the second captured substring is "b".


ATOMIC GROUPING AND POSSESSIVE QUANTIFIERS

       With both maximizing ("greedy") and minimizing ("ungreedy"  or  "lazy")
       repetition,  failure  of what follows normally causes the repeated item
       to be re-evaluated to see if a different number of repeats  allows  the
       rest  of  the pattern to match. Sometimes it is useful to prevent this,
       either to change the nature of the match, or to cause it  fail  earlier
       than  it otherwise might, when the author of the pattern knows there is
       no point in carrying on.

       Consider, for example, the pattern \d+foo when applied to  the  subject
       line

         123456bar

       After matching all 6 digits and then failing to match "foo", the normal
       action of the matcher is to try again with only 5 digits  matching  the
       \d+  item,  and  then  with  4,  and  so on, before ultimately failing.
       "Atomic grouping" (a term taken from Jeffrey  Friedl's  book)  provides
       the  means for specifying that once a subpattern has matched, it is not
       to be re-evaluated in this way.

       If we use atomic grouping for the previous example, the  matcher  gives
       up  immediately  on failing to match "foo" the first time. The notation
       is a kind of special parenthesis, starting with (?> as in this example:

         (?>\d+)foo

       This  kind  of  parenthesis "locks up" the  part of the pattern it con-
       tains once it has matched, and a failure further into  the  pattern  is
       prevented  from  backtracking into it. Backtracking past it to previous
       items, however, works as normal.

       An alternative description is that a subpattern of  this  type  matches
       the  string  of  characters  that an identical standalone pattern would
       match, if anchored at the current point in the subject string.

       Atomic grouping subpatterns are not capturing subpatterns. Simple cases
       such as the above example can be thought of as a maximizing repeat that
       must swallow everything it can. So, while both \d+ and  \d+?  are  pre-
       pared  to  adjust  the number of digits they match in order to make the
       rest of the pattern match, (?>\d+) can only match an entire sequence of
       digits.

       Atomic  groups in general can of course contain arbitrarily complicated
       subpatterns, and can be nested. However, when  the  subpattern  for  an
       atomic group is just a single repeated item, as in the example above, a
       simpler notation, called a "possessive quantifier" can  be  used.  This
       consists  of  an  additional  + character following a quantifier. Using
       this notation, the previous example can be rewritten as

         \d++foo

       Possessive  quantifiers  are  always  greedy;  the   setting   of   the
       PCRE_UNGREEDY option is ignored. They are a convenient notation for the
       simpler forms of atomic group. However, there is no difference  in  the
       meaning  of  a  possessive  quantifier and the equivalent atomic group,
       though there may be a performance  difference;  possessive  quantifiers
       should be slightly faster.

       The  possessive  quantifier syntax is an extension to the Perl 5.8 syn-
       tax.  Jeffrey Friedl originated the idea (and the name)  in  the  first
       edition of his book. Mike McCloskey liked it, so implemented it when he
       built Sun's Java package, and PCRE copied it from there. It  ultimately
       found its way into Perl at release 5.10.

       PCRE has an optimization that automatically "possessifies" certain sim-
       ple pattern constructs. For example, the sequence  A+B  is  treated  as
       A++B  because  there is no point in backtracking into a sequence of A's
       when B must follow.

       When a pattern contains an unlimited repeat inside  a  subpattern  that
       can  itself  be  repeated  an  unlimited number of times, the use of an
       atomic group is the only way to avoid some  failing  matches  taking  a
       very long time indeed. The pattern

         (\D+|<\d+>)*[!?]

       matches  an  unlimited number of substrings that either consist of non-
       digits, or digits enclosed in <>, followed by either ! or  ?.  When  it
       matches, it runs quickly. However, if it is applied to

         aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

       it  takes  a  long  time  before reporting failure. This is because the
       string can be divided between the internal \D+ repeat and the  external
       *  repeat  in  a  large  number of ways, and all have to be tried. (The
       example uses [!?] rather than a single character at  the  end,  because
       both  PCRE  and  Perl have an optimization that allows for fast failure
       when a single character is used. They remember the last single  charac-
       ter  that  is required for a match, and fail early if it is not present
       in the string.) If the pattern is changed so that  it  uses  an  atomic
       group, like this:

         ((?>\D+)|<\d+>)*[!?]

       sequences  of non-digits cannot be broken, and failure happens quickly.


BACK REFERENCES

       Outside a character class, a backslash followed by a digit greater than
       0 (and possibly further digits) is a back reference to a capturing sub-
       pattern earlier (that is, to its left) in the pattern,  provided  there
       have been that many previous capturing left parentheses.

       However, if the decimal number following the backslash is less than 10,
       it is always taken as a back reference, and causes  an  error  only  if
       there  are  not that many capturing left parentheses in the entire pat-
       tern. In other words, the parentheses that are referenced need  not  be
       to  the left of the reference for numbers less than 10. A "forward back
       reference" of this type can make sense when a  repetition  is  involved
       and  the  subpattern to the right has participated in an earlier itera-
       tion.

       It is not possible to have a numerical "forward back  reference"  to  a
       subpattern  whose  number  is  10  or  more using this syntax because a
       sequence such as \50 is interpreted as a character  defined  in  octal.
       See the subsection entitled "Non-printing characters" above for further
       details of the handling of digits following a backslash.  There  is  no
       such  problem  when named parentheses are used. A back reference to any
       subpattern is possible using named parentheses (see below).

       Another way of avoiding the ambiguity inherent in  the  use  of  digits
       following a backslash is to use the \g escape sequence, which is a fea-
       ture introduced in Perl 5.10. This escape must be followed by  a  posi-
       tive  or  a negative number, optionally enclosed in braces. These exam-
       ples are all identical:

         (ring), \1
         (ring), \g1
         (ring), \g{1}

       A positive number specifies an absolute reference without the ambiguity
       that  is  present  in  the older syntax. It is also useful when literal
       digits follow the reference. A negative number is a relative reference.
       Consider this example:

         (abc(def)ghi)\g{-1}

       The sequence \g{-1} is a reference to the most recently started captur-
       ing subpattern before \g, that is, is it equivalent to  \2.  Similarly,
       \g{-2} would be equivalent to \1. The use of relative references can be
       helpful in long patterns, and also in  patterns  that  are  created  by
       joining together fragments that contain references within themselves.

       A  back  reference matches whatever actually matched the capturing sub-
       pattern in the current subject string, rather  than  anything  matching
       the subpattern itself (see "Subpatterns as subroutines" below for a way
       of doing that). So the pattern

         (sens|respons)e and \1ibility

       matches "sense and sensibility" and "response and responsibility",  but
       not  "sense and responsibility". If caseful matching is in force at the
       time of the back reference, the case of letters is relevant. For  exam-
       ple,

         ((?i)rah)\s+\1

       matches  "rah  rah"  and  "RAH RAH", but not "RAH rah", even though the
       original capturing subpattern is matched caselessly.

       Back references to named subpatterns use the Perl  syntax  \k<name>  or
       \k'name'  or  the  Python  syntax (?P=name). We could rewrite the above
       example in either of the following ways:

         (?<p1>(?i)rah)\s+\k<p1>
         (?P<p1>(?i)rah)\s+(?P=p1)

       A subpattern that is referenced by  name  may  appear  in  the  pattern
       before or after the reference.

       There  may be more than one back reference to the same subpattern. If a
       subpattern has not actually been used in a particular match,  any  back
       references to it always fail. For example, the pattern

         (a|(bc))\2

       always  fails if it starts to match "a" rather than "bc". Because there
       may be many capturing parentheses in a pattern,  all  digits  following
       the  backslash  are taken as part of a potential back reference number.
       If the pattern continues with a digit character, some delimiter must be
       used  to  terminate  the back reference. If the PCRE_EXTENDED option is
       set, this can be whitespace.  Otherwise an  empty  comment  (see  "Com-
       ments" below) can be used.

       A  back reference that occurs inside the parentheses to which it refers
       fails when the subpattern is first used, so, for example,  (a\1)  never
       matches.   However,  such references can be useful inside repeated sub-
       patterns. For example, the pattern

         (a|b\1)+

       matches any number of "a"s and also "aba", "ababbaa" etc. At each iter-
       ation  of  the  subpattern,  the  back  reference matches the character
       string corresponding to the previous iteration. In order  for  this  to
       work,  the  pattern must be such that the first iteration does not need
       to match the back reference. This can be done using alternation, as  in
       the example above, or by a quantifier with a minimum of zero.


ASSERTIONS

       An  assertion  is  a  test on the characters following or preceding the
       current matching point that does not actually consume  any  characters.
       The  simple  assertions  coded  as  \b, \B, \A, \G, \Z, \z, ^ and $ are
       described above.

       More complicated assertions are coded as  subpatterns.  There  are  two
       kinds:  those  that  look  ahead of the current position in the subject
       string, and those that look  behind  it.  An  assertion  subpattern  is
       matched  in  the  normal way, except that it does not cause the current
       matching position to be changed.

       Assertion subpatterns are not capturing subpatterns,  and  may  not  be
       repeated,  because  it  makes no sense to assert the same thing several
       times. If any kind of assertion contains capturing  subpatterns  within
       it,  these are counted for the purposes of numbering the capturing sub-
       patterns in the whole pattern.  However, substring capturing is carried
       out  only  for  positive assertions, because it does not make sense for
       negative assertions.

   Lookahead assertions

       Lookahead assertions start with (?= for positive assertions and (?! for
       negative assertions. For example,

         \w+(?=;)

       matches  a word followed by a semicolon, but does not include the semi-
       colon in the match, and

         foo(?!bar)

       matches any occurrence of "foo" that is not  followed  by  "bar".  Note
       that the apparently similar pattern

         (?!foo)bar

       does  not  find  an  occurrence  of "bar" that is preceded by something
       other than "foo"; it finds any occurrence of "bar" whatsoever,  because
       the assertion (?!foo) is always true when the next three characters are
       "bar". A lookbehind assertion is needed to achieve the other effect.

       If you want to force a matching failure at some point in a pattern, the
       most  convenient  way  to  do  it  is with (?!) because an empty string
       always matches, so an assertion that requires there not to be an  empty
       string must always fail.

   Lookbehind assertions

       Lookbehind  assertions start with (?<= for positive assertions and (?<!
       for negative assertions. For example,

         (?<!foo)bar

       does find an occurrence of "bar" that is not  preceded  by  "foo".  The
       contents  of  a  lookbehind  assertion are restricted such that all the
       strings it matches must have a fixed length. However, if there are sev-
       eral  top-level  alternatives,  they  do  not all have to have the same
       fixed length. Thus

         (?<=bullock|donkey)

       is permitted, but

         (?<!dogs?|cats?)

       causes an error at compile time. Branches that match  different  length
       strings  are permitted only at the top level of a lookbehind assertion.
       This is an extension compared with  Perl  (at  least  for  5.8),  which
       requires  all branches to match the same length of string. An assertion
       such as

         (?<=ab(c|de))

       is not permitted, because its single top-level  branch  can  match  two
       different  lengths,  but  it is acceptable if rewritten to use two top-
       level branches:

         (?<=abc|abde)

       The implementation of lookbehind assertions is, for  each  alternative,
       to  temporarily  move the current position back by the fixed length and
       then try to match. If there are insufficient characters before the cur-
       rent position, the assertion fails.

       PCRE does not allow the \C escape (which matches a single byte in UTF-8
       mode) to appear in lookbehind assertions, because it makes it  impossi-
       ble  to  calculate the length of the lookbehind. The \X and \R escapes,
       which can match different numbers of bytes, are also not permitted.

       Possessive quantifiers can  be  used  in  conjunction  with  lookbehind
       assertions  to  specify  efficient  matching  at the end of the subject
       string. Consider a simple pattern such as

         abcd$

       when applied to a long string that does  not  match.  Because  matching
       proceeds from left to right, PCRE will look for each "a" in the subject
       and then see if what follows matches the rest of the  pattern.  If  the
       pattern is specified as

         ^.*abcd$

       the  initial .* matches the entire string at first, but when this fails
       (because there is no following "a"), it backtracks to match all but the
       last  character,  then all but the last two characters, and so on. Once
       again the search for "a" covers the entire string, from right to  left,
       so we are no better off. However, if the pattern is written as

         ^.*+(?<=abcd)

       there  can  be  no backtracking for the .*+ item; it can match only the
       entire string. The subsequent lookbehind assertion does a  single  test
       on  the last four characters. If it fails, the match fails immediately.
       For long strings, this approach makes a significant difference  to  the
       processing time.

   Using multiple assertions

       Several assertions (of any sort) may occur in succession. For example,

         (?<=\d{3})(?<!999)foo

       matches  "foo" preceded by three digits that are not "999". Notice that
       each of the assertions is applied independently at the  same  point  in
       the  subject  string.  First  there  is a check that the previous three
       characters are all digits, and then there is  a  check  that  the  same
       three characters are not "999".  This pattern does not match "foo" pre-
       ceded by six characters, the first of which are  digits  and  the  last
       three  of  which  are not "999". For example, it doesn't match "123abc-
       foo". A pattern to do that is

         (?<=\d{3}...)(?<!999)foo

       This time the first assertion looks at the  preceding  six  characters,
       checking that the first three are digits, and then the second assertion
       checks that the preceding three characters are not "999".

       Assertions can be nested in any combination. For example,

         (?<=(?<!foo)bar)baz

       matches an occurrence of "baz" that is preceded by "bar" which in  turn
       is not preceded by "foo", while

         (?<=\d{3}(?!999)...)foo

       is  another pattern that matches "foo" preceded by three digits and any
       three characters that are not "999".


CONDITIONAL SUBPATTERNS

       It is possible to cause the matching process to obey a subpattern  con-
       ditionally  or to choose between two alternative subpatterns, depending
       on the result of an assertion, or whether a previous capturing  subpat-
       tern  matched  or not. The two possible forms of conditional subpattern
       are

         (?(condition)yes-pattern)
         (?(condition)yes-pattern|no-pattern)

       If the condition is satisfied, the yes-pattern is used;  otherwise  the
       no-pattern  (if  present)  is used. If there are more than two alterna-
       tives in the subpattern, a compile-time error occurs.

       There are four kinds of condition: references  to  subpatterns,  refer-
       ences to recursion, a pseudo-condition called DEFINE, and assertions.

   Checking for a used subpattern by number

       If  the  text between the parentheses consists of a sequence of digits,
       the condition is true if the capturing subpattern of  that  number  has
       previously matched.

       Consider  the  following  pattern, which contains non-significant white
       space to make it more readable (assume the PCRE_EXTENDED option) and to
       divide it into three parts for ease of discussion:

         ( \( )?    [^()]+    (?(1) \) )

       The  first  part  matches  an optional opening parenthesis, and if that
       character is present, sets it as the first captured substring. The sec-
       ond  part  matches one or more characters that are not parentheses. The
       third part is a conditional subpattern that tests whether the first set
       of parentheses matched or not. If they did, that is, if subject started
       with an opening parenthesis, the condition is true, and so the yes-pat-
       tern  is  executed  and  a  closing parenthesis is required. Otherwise,
       since no-pattern is not present, the  subpattern  matches  nothing.  In
       other  words,  this  pattern  matches  a  sequence  of non-parentheses,
       optionally enclosed in parentheses.

   Checking for a used subpattern by name

       Perl uses the syntax (?(<name>)...) or (?('name')...)  to  test  for  a
       used  subpattern  by  name.  For compatibility with earlier versions of
       PCRE, which had this facility before Perl, the syntax  (?(name)...)  is
       also  recognized. However, there is a possible ambiguity with this syn-
       tax, because subpattern names may  consist  entirely  of  digits.  PCRE
       looks  first for a named subpattern; if it cannot find one and the name
       consists entirely of digits, PCRE looks for a subpattern of  that  num-
       ber,  which must be greater than zero. Using subpattern names that con-
       sist entirely of digits is not recommended.

       Rewriting the above example to use a named subpattern gives this:

         (?<OPEN> \( )?    [^()]+    (?(<OPEN>) \) )


   Checking for pattern recursion

       If the condition is the string (R), and there is no subpattern with the
       name  R, the condition is true if a recursive call to the whole pattern
       or any subpattern has been made. If digits or a name preceded by amper-
       sand follow the letter R, for example:

         (?(R3)...) or (?(R&name)...)

       the  condition is true if the most recent recursion is into the subpat-
       tern whose number or name is given. This condition does not  check  the
       entire recursion stack.

       At  "top  level", all these recursion test conditions are false. Recur-
       sive patterns are described below.

   Defining subpatterns for use by reference only

       If the condition is the string (DEFINE), and  there  is  no  subpattern
       with  the  name  DEFINE,  the  condition is always false. In this case,
       there may be only one alternative  in  the  subpattern.  It  is  always
       skipped  if  control  reaches  this  point  in the pattern; the idea of
       DEFINE is that it can be used to define "subroutines" that can be  ref-
       erenced  from elsewhere. (The use of "subroutines" is described below.)
       For example, a pattern to match an IPv4 address could be  written  like
       this (ignore whitespace and line breaks):

         (?(DEFINE) (?<byte> 2[0-4]\d | 25[0-5] | 1\d\d | [1-9]?\d) )
         \b (?&byte) (\.(?&byte)){3} \b

       The  first part of the pattern is a DEFINE group inside which a another
       group named "byte" is defined. This matches an individual component  of
       an  IPv4  address  (a number less than 256). When matching takes place,
       this part of the pattern is skipped because DEFINE acts  like  a  false
       condition.

       The rest of the pattern uses references to the named group to match the
       four dot-separated components of an IPv4 address, insisting on  a  word
       boundary at each end.

   Assertion conditions

       If  the  condition  is  not  in any of the above formats, it must be an
       assertion.  This may be a positive or negative lookahead or  lookbehind
       assertion.  Consider  this  pattern,  again  containing non-significant
       white space, and with the two alternatives on the second line:

         (?(?=[^a-z]*[a-z])
         \d{2}-[a-z]{3}-\d{2}  |  \d{2}-\d{2}-\d{2} )

       The condition  is  a  positive  lookahead  assertion  that  matches  an
       optional  sequence of non-letters followed by a letter. In other words,
       it tests for the presence of at least one letter in the subject.  If  a
       letter  is found, the subject is matched against the first alternative;
       otherwise it is  matched  against  the  second.  This  pattern  matches
       strings  in  one  of the two forms dd-aaa-dd or dd-dd-dd, where aaa are
       letters and dd are digits.


COMMENTS

       The sequence (?# marks the start of a comment that continues up to  the
       next  closing  parenthesis.  Nested  parentheses are not permitted. The
       characters that make up a comment play no part in the pattern  matching
       at all.

       If  the PCRE_EXTENDED option is set, an unescaped # character outside a
       character class introduces a  comment  that  continues  to  immediately
       after the next newline in the pattern.


RECURSIVE PATTERNS

       Consider  the problem of matching a string in parentheses, allowing for
       unlimited nested parentheses. Without the use of  recursion,  the  best
       that  can  be  done  is  to use a pattern that matches up to some fixed
       depth of nesting. It is not possible to  handle  an  arbitrary  nesting
       depth.

       For some time, Perl has provided a facility that allows regular expres-
       sions to recurse (amongst other things). It does this by  interpolating
       Perl  code in the expression at run time, and the code can refer to the
       expression itself. A Perl pattern using code interpolation to solve the
       parentheses problem can be created like this:

         $re = qr{\( (?: (?>[^()]+) | (?p{$re}) )* \)}x;

       The (?p{...}) item interpolates Perl code at run time, and in this case
       refers recursively to the pattern in which it appears.

       Obviously, PCRE cannot support the interpolation of Perl code. Instead,
       it  supports  special  syntax  for recursion of the entire pattern, and
       also for individual subpattern recursion.  After  its  introduction  in
       PCRE  and  Python,  this  kind of recursion was introduced into Perl at
       release 5.10.

       A special item that consists of (? followed by a  number  greater  than
       zero and a closing parenthesis is a recursive call of the subpattern of
       the given number, provided that it occurs inside that  subpattern.  (If
       not,  it  is  a  "subroutine" call, which is described in the next sec-
       tion.) The special item (?R) or (?0) is a recursive call of the  entire
       regular expression.

       In  PCRE (like Python, but unlike Perl), a recursive subpattern call is
       always treated as an atomic group. That is, once it has matched some of
       the subject string, it is never re-entered, even if it contains untried
       alternatives and there is a subsequent matching failure.

       This PCRE pattern solves the nested  parentheses  problem  (assume  the
       PCRE_EXTENDED option is set so that white space is ignored):

         \( ( (?>[^()]+) | (?R) )* \)

       First  it matches an opening parenthesis. Then it matches any number of
       substrings which can either be a  sequence  of  non-parentheses,  or  a
       recursive  match  of the pattern itself (that is, a correctly parenthe-
       sized substring).  Finally there is a closing parenthesis.

       If this were part of a larger pattern, you would not  want  to  recurse
       the entire pattern, so instead you could use this:

         ( \( ( (?>[^()]+) | (?1) )* \) )

       We  have  put the pattern into parentheses, and caused the recursion to
       refer to them instead of the whole pattern. In a larger pattern,  keep-
       ing  track  of parenthesis numbers can be tricky. It may be more conve-
       nient to use named parentheses instead. The Perl  syntax  for  this  is
       (?&name);  PCRE's  earlier syntax (?P>name) is also supported. We could
       rewrite the above example as follows:

         (?<pn> \( ( (?>[^()]+) | (?&pn) )* \) )

       If there is more than one subpattern with the same name,  the  earliest
       one  is used. This particular example pattern contains nested unlimited
       repeats, and so the use of atomic grouping for matching strings of non-
       parentheses  is  important when applying the pattern to strings that do
       not match. For example, when this pattern is applied to

         (aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa()

       it yields "no match" quickly. However, if atomic grouping is not  used,
       the  match  runs  for a very long time indeed because there are so many
       different ways the + and * repeats can carve up the  subject,  and  all
       have to be tested before failure can be reported.

       At the end of a match, the values set for any capturing subpatterns are
       those from the outermost level of the recursion at which the subpattern
       value  is  set.   If  you want to obtain intermediate values, a callout
       function can be used (see below and the pcrecallout documentation).  If
       the pattern above is matched against

         (ab(cd)ef)

       the  value  for  the  capturing  parentheses is "ef", which is the last
       value taken on at the top level. If additional parentheses  are  added,
       giving

         \( ( ( (?>[^()]+) | (?R) )* ) \)
            ^                        ^
            ^                        ^

       the  string  they  capture is "ab(cd)ef", the contents of the top level
       parentheses. If there are more than 15 capturing parentheses in a  pat-
       tern, PCRE has to obtain extra memory to store data during a recursion,
       which it does by using pcre_malloc, freeing  it  via  pcre_free  after-
       wards.  If  no  memory  can  be  obtained,  the  match  fails  with the
       PCRE_ERROR_NOMEMORY error.

       Do not confuse the (?R) item with the condition (R),  which  tests  for
       recursion.   Consider  this pattern, which matches text in angle brack-
       ets, allowing for arbitrary nesting. Only digits are allowed in  nested
       brackets  (that is, when recursing), whereas any characters are permit-
       ted at the outer level.

         < (?: (?(R) \d++  | [^<>]*+) | (?R)) * >

       In this pattern, (?(R) is the start of a conditional  subpattern,  with
       two  different  alternatives for the recursive and non-recursive cases.
       The (?R) item is the actual recursive call.


SUBPATTERNS AS SUBROUTINES

       If the syntax for a recursive subpattern reference (either by number or
       by  name)  is used outside the parentheses to which it refers, it oper-
       ates like a subroutine in a programming language. The "called"  subpat-
       tern  may  be defined before or after the reference. An earlier example
       pointed out that the pattern

         (sens|respons)e and \1ibility

       matches "sense and sensibility" and "response and responsibility",  but
       not "sense and responsibility". If instead the pattern

         (sens|respons)e and (?1)ibility

       is  used, it does match "sense and responsibility" as well as the other
       two strings. Another example is  given  in  the  discussion  of  DEFINE
       above.

       Like recursive subpatterns, a "subroutine" call is always treated as an
       atomic group. That is, once it has matched some of the subject  string,
       it  is  never  re-entered, even if it contains untried alternatives and
       there is a subsequent matching failure.

       When a subpattern is used as a subroutine, processing options  such  as
       case-independence are fixed when the subpattern is defined. They cannot
       be changed for different calls. For example, consider this pattern:

         (abc)(?i:(?1))

       It matches "abcabc". It does not match "abcABC" because the  change  of
       processing option does not affect the called subpattern.


CALLOUTS

       Perl has a feature whereby using the sequence (?{...}) causes arbitrary
       Perl code to be obeyed in the middle of matching a regular  expression.
       This makes it possible, amongst other things, to extract different sub-
       strings that match the same pair of parentheses when there is a repeti-
       tion.

       PCRE provides a similar feature, but of course it cannot obey arbitrary
       Perl code. The feature is called "callout". The caller of PCRE provides
       an  external function by putting its entry point in the global variable
       pcre_callout.  By default, this variable contains NULL, which  disables
       all calling out.

       Within  a  regular  expression,  (?C) indicates the points at which the
       external function is to be called. If you want  to  identify  different
       callout  points, you can put a number less than 256 after the letter C.
       The default value is zero.  For example, this pattern has  two  callout
       points:

         (?C1)abc(?C2)def

       If the PCRE_AUTO_CALLOUT flag is passed to pcre_compile(), callouts are
       automatically installed before each item in the pattern. They  are  all
       numbered 255.

       During matching, when PCRE reaches a callout point (and pcre_callout is
       set), the external function is called. It is provided with  the  number
       of  the callout, the position in the pattern, and, optionally, one item
       of data originally supplied by the caller of pcre_exec().  The  callout
       function  may cause matching to proceed, to backtrack, or to fail alto-
       gether. A complete description of the interface to the callout function
       is given in the pcrecallout documentation.


SEE ALSO

       pcreapi(3), pcrecallout(3), pcrematching(3), pcre(3).


AUTHOR

       Philip Hazel
       University Computing Service
       Cambridge CB2 3QH, England.


REVISION

       Last updated: 06 March 2007
       Copyright (c) 1997-2007 University of Cambridge.
------------------------------------------------------------------------------


PCREPARTIAL(3)                                                  PCREPARTIAL(3)


NAME
       PCRE - Perl-compatible regular expressions


PARTIAL MATCHING IN PCRE

       In  normal  use  of  PCRE,  if  the  subject  string  that is passed to
       pcre_exec() or pcre_dfa_exec() matches as far as it goes,  but  is  too
       short  to  match  the  entire  pattern, PCRE_ERROR_NOMATCH is returned.
       There are circumstances where it might be helpful to  distinguish  this
       case from other cases in which there is no match.

       Consider, for example, an application where a human is required to type
       in data for a field with specific formatting requirements.  An  example
       might be a date in the form ddmmmyy, defined by this pattern:

         ^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$

       If the application sees the user's keystrokes one by one, and can check
       that what has been typed so far is potentially valid,  it  is  able  to
       raise  an  error as soon as a mistake is made, possibly beeping and not
       reflecting the character that has been typed. This  immediate  feedback
       is  likely  to  be a better user interface than a check that is delayed
       until the entire string has been entered.

       PCRE supports the concept of partial matching by means of the PCRE_PAR-
       TIAL   option,   which   can   be   set  when  calling  pcre_exec()  or
       pcre_dfa_exec(). When this flag is set for pcre_exec(), the return code
       PCRE_ERROR_NOMATCH  is converted into PCRE_ERROR_PARTIAL if at any time
       during the matching process the last part of the subject string matched
       part  of  the  pattern. Unfortunately, for non-anchored matching, it is
       not possible to obtain the position of the start of the partial  match.
       No captured data is set when PCRE_ERROR_PARTIAL is returned.

       When   PCRE_PARTIAL   is  set  for  pcre_dfa_exec(),  the  return  code
       PCRE_ERROR_NOMATCH is converted into PCRE_ERROR_PARTIAL if the  end  of
       the  subject is reached, there have been no complete matches, but there
       is still at least one matching possibility. The portion of  the  string
       that provided the partial match is set as the first matching string.

       Using PCRE_PARTIAL disables one of PCRE's optimizations. PCRE remembers
       the last literal byte in a pattern, and abandons  matching  immediately
       if  such a byte is not present in the subject string. This optimization
       cannot be used for a subject string that might match only partially.


RESTRICTED PATTERNS FOR PCRE_PARTIAL

       Because of the way certain internal optimizations  are  implemented  in
       the  pcre_exec()  function, the PCRE_PARTIAL option cannot be used with
       all patterns. These restrictions do not apply when  pcre_dfa_exec()  is
       used.  For pcre_exec(), repeated single characters such as

         a{2,4}

       and repeated single metasequences such as

         \d+

       are  not permitted if the maximum number of occurrences is greater than
       one.  Optional items such as \d? (where the maximum is one) are permit-
       ted.   Quantifiers  with any values are permitted after parentheses, so
       the invalid examples above can be coded thus:

         (a){2,4}
         (\d)+

       These constructions run more slowly, but for the kinds  of  application
       that  are  envisaged  for this facility, this is not felt to be a major
       restriction.

       If PCRE_PARTIAL is set for a pattern  that  does  not  conform  to  the
       restrictions,  pcre_exec() returns the error code PCRE_ERROR_BADPARTIAL
       (-13).


EXAMPLE OF PARTIAL MATCHING USING PCRETEST

       If the escape sequence \P is present  in  a  pcretest  data  line,  the
       PCRE_PARTIAL flag is used for the match. Here is a run of pcretest that
       uses the date example quoted above:

           re> /^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$/
         data> 25jun04\P
          0: 25jun04
          1: jun
         data> 25dec3\P
         Partial match
         data> 3ju\P
         Partial match
         data> 3juj\P
         No match
         data> j\P
         No match

       The first data string is matched  completely,  so  pcretest  shows  the
       matched  substrings.  The  remaining four strings do not match the com-
       plete pattern, but the first two are partial matches.  The  same  test,
       using  pcre_dfa_exec()  matching  (by means of the \D escape sequence),
       produces the following output:

           re> /^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$/
         data> 25jun04\P\D
          0: 25jun04
         data> 23dec3\P\D
         Partial match: 23dec3
         data> 3ju\P\D
         Partial match: 3ju
         data> 3juj\P\D
         No match
         data> j\P\D
         No match

       Notice that in this case the portion of the string that was matched  is
       made available.


MULTI-SEGMENT MATCHING WITH pcre_dfa_exec()

       When a partial match has been found using pcre_dfa_exec(), it is possi-
       ble to continue the match by  providing  additional  subject  data  and
       calling  pcre_dfa_exec()  again  with the same compiled regular expres-
       sion, this time setting the PCRE_DFA_RESTART option. You must also pass
       the  same working space as before, because this is where details of the
       previous partial match are stored. Here is an example  using  pcretest,
       using the \R escape sequence to set the PCRE_DFA_RESTART option (\P and
       \D are as above):

           re> /^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$/
         data> 23ja\P\D
         Partial match: 23ja
         data> n05\R\D
          0: n05

       The first call has "23ja" as the subject, and requests  partial  match-
       ing;  the  second  call  has  "n05"  as  the  subject for the continued
       (restarted) match.  Notice that when the match is  complete,  only  the
       last  part  is  shown;  PCRE  does not retain the previously partially-
       matched string. It is up to the calling program to do that if it  needs
       to.

       You  can  set  PCRE_PARTIAL  with  PCRE_DFA_RESTART to continue partial
       matching over multiple segments. This facility can be used to pass very
       long  subject  strings to pcre_dfa_exec(). However, some care is needed
       for certain types of pattern.

       1. If the pattern contains tests for the beginning or end  of  a  line,
       you  need  to pass the PCRE_NOTBOL or PCRE_NOTEOL options, as appropri-
       ate, when the subject string for any call does not contain  the  begin-
       ning or end of a line.

       2.  If  the  pattern contains backward assertions (including \b or \B),
       you need to arrange for some overlap in the subject  strings  to  allow
       for  this.  For  example, you could pass the subject in chunks that are
       500 bytes long, but in a buffer of 700 bytes, with the starting  offset
       set to 200 and the previous 200 bytes at the start of the buffer.

       3.  Matching a subject string that is split into multiple segments does
       not always produce exactly the same result as matching over one  single
       long  string.   The  difference arises when there are multiple matching
       possibilities, because a partial match result is given only when  there
       are  no completed matches in a call to pcre_dfa_exec(). This means that
       as soon as the shortest match has been found,  continuation  to  a  new
       subject segment is no longer possible.  Consider this pcretest example:

           re> /dog(sbody)?/
         data> do\P\D
         Partial match: do
         data> gsb\R\P\D
          0: g
         data> dogsbody\D
          0: dogsbody
          1: dog

       The pattern matches the words "dog" or "dogsbody". When the subject  is
       presented  in  several  parts  ("do" and "gsb" being the first two) the
       match stops when "dog" has been found, and it is not possible  to  con-
       tinue.  On  the  other  hand,  if  "dogsbody"  is presented as a single
       string, both matches are found.

       Because of this phenomenon, it does not usually make  sense  to  end  a
       pattern that is going to be matched in this way with a variable repeat.

       4. Patterns that contain alternatives at the top level which do not all
       start with the same pattern item may not work as expected. For example,
       consider this pattern:

         1234|3789

       If the first part of the subject is "ABC123", a partial  match  of  the
       first  alternative  is found at offset 3. There is no partial match for
       the second alternative, because such a match does not start at the same
       point  in  the  subject  string. Attempting to continue with the string
       "789" does not yield a match because only those alternatives that match
       at  one point in the subject are remembered. The problem arises because
       the start of the second alternative matches within the  first  alterna-
       tive. There is no problem with anchored patterns or patterns such as:

         1234|ABCD

       where no string can be a partial match for both alternatives.


AUTHOR

       Philip Hazel
       University Computing Service
       Cambridge CB2 3QH, England.


REVISION

       Last updated: 06 March 2007
       Copyright (c) 1997-2007 University of Cambridge.
------------------------------------------------------------------------------


PCREPRECOMPILE(3)                                            PCREPRECOMPILE(3)


NAME
       PCRE - Perl-compatible regular expressions


SAVING AND RE-USING PRECOMPILED PCRE PATTERNS

       If  you  are running an application that uses a large number of regular
       expression patterns, it may be useful to store them  in  a  precompiled
       form  instead  of  having to compile them every time the application is
       run.  If you are not  using  any  private  character  tables  (see  the
       pcre_maketables()  documentation),  this is relatively straightforward.
       If you are using private tables, it is a little bit more complicated.

       If you save compiled patterns to a file, you can copy them to a differ-
       ent  host  and  run them there. This works even if the new host has the
       opposite endianness to the one on which  the  patterns  were  compiled.
       There  may  be a small performance penalty, but it should be insignifi-
       cant. However, compiling regular expressions with one version  of  PCRE
       for  use  with  a  different  version is not guaranteed to work and may
       cause crashes.


SAVING A COMPILED PATTERN
       The value returned by pcre_compile() points to a single block of memory
       that  holds  the compiled pattern and associated data. You can find the
       length of this block in bytes by calling pcre_fullinfo() with an  argu-
       ment  of  PCRE_INFO_SIZE. You can then save the data in any appropriate
       manner. Here is sample code that compiles a pattern and writes it to  a
       file. It assumes that the variable fd refers to a file that is open for
       output:

         int erroroffset, rc, size;
         char *error;
         pcre *re;

         re = pcre_compile("my pattern", 0, &error, &erroroffset, NULL);
         if (re == NULL) { ... handle errors ... }
         rc = pcre_fullinfo(re, NULL, PCRE_INFO_SIZE, &size);
         if (rc < 0) { ... handle errors ... }
         rc = fwrite(re, 1, size, fd);
         if (rc != size) { ... handle errors ... }

       In this example, the bytes  that  comprise  the  compiled  pattern  are
       copied  exactly.  Note that this is binary data that may contain any of
       the 256 possible byte  values.  On  systems  that  make  a  distinction
       between binary and non-binary data, be sure that the file is opened for
       binary output.

       If you want to write more than one pattern to a file, you will have  to
       devise  a  way of separating them. For binary data, preceding each pat-
       tern with its length is probably  the  most  straightforward  approach.
       Another  possibility is to write out the data in hexadecimal instead of
       binary, one pattern to a line.

       Saving compiled patterns in a file is only one possible way of  storing
       them  for later use. They could equally well be saved in a database, or
       in the memory of some daemon process that passes them  via  sockets  to
       the processes that want them.

       If  the pattern has been studied, it is also possible to save the study
       data in a similar way to the compiled  pattern  itself.  When  studying
       generates  additional  information, pcre_study() returns a pointer to a
       pcre_extra data block. Its format is defined in the section on matching
       a  pattern in the pcreapi documentation. The study_data field points to
       the binary study data,  and  this  is  what  you  must  save  (not  the
       pcre_extra  block itself). The length of the study data can be obtained
       by calling pcre_fullinfo() with  an  argument  of  PCRE_INFO_STUDYSIZE.
       Remember  to check that pcre_study() did return a non-NULL value before
       trying to save the study data.


RE-USING A PRECOMPILED PATTERN

       Re-using a precompiled pattern is straightforward. Having  reloaded  it
       into   main   memory,   you   pass   its   pointer  to  pcre_exec()  or
       pcre_dfa_exec() in the usual way. This  should  work  even  on  another
       host,  and  even  if  that  host has the opposite endianness to the one
       where the pattern was compiled.

       However, if you passed a pointer to custom character  tables  when  the
       pattern  was  compiled  (the  tableptr argument of pcre_compile()), you
       must now pass a similar  pointer  to  pcre_exec()  or  pcre_dfa_exec(),
       because  the  value  saved  with the compiled pattern will obviously be
       nonsense. A field in a pcre_extra() block is used to pass this data, as
       described  in the section on matching a pattern in the pcreapi documen-
       tation.

       If you did not provide custom character tables  when  the  pattern  was
       compiled,  the  pointer  in  the compiled pattern is NULL, which causes
       pcre_exec() to use PCRE's internal tables. Thus, you  do  not  need  to
       take any special action at run time in this case.

       If  you  saved study data with the compiled pattern, you need to create
       your own pcre_extra data block and set the study_data field to point to
       the  reloaded  study  data. You must also set the PCRE_EXTRA_STUDY_DATA
       bit in the flags field to indicate that study  data  is  present.  Then
       pass  the  pcre_extra  block  to  pcre_exec() or pcre_dfa_exec() in the
       usual way.


COMPATIBILITY WITH DIFFERENT PCRE RELEASES

       The layout of the control block that is at the start of the  data  that
       makes  up  a  compiled pattern was changed for release 5.0. If you have
       any saved patterns that were compiled with  previous  releases  (not  a
       facility  that  was  previously advertised), you will have to recompile
       them for release 5.0 and above.

       If you have any saved patterns in UTF-8 mode that use  \p  or  \P  that
       were  compiled  with any release up to and including 6.4, you will have
       to recompile them for release 6.5 and above.

       All saved patterns from earlier releases must be recompiled for release
       7.0  or  higher,  because  there was an internal reorganization at that
       release.


AUTHOR

       Philip Hazel
       University Computing Service
       Cambridge CB2 3QH, England.


REVISION

       Last updated: 24 April 2007
       Copyright (c) 1997-2007 University of Cambridge.
------------------------------------------------------------------------------


PCREPERFORM(3)                                                  PCREPERFORM(3)


NAME
       PCRE - Perl-compatible regular expressions


PCRE PERFORMANCE

       Two  aspects  of performance are discussed below: memory usage and pro-
       cessing time. The way you express your pattern as a regular  expression
       can affect both of them.


MEMORY USAGE

       Patterns are compiled by PCRE into a reasonably efficient byte code, so
       that most simple patterns do not use much memory. However, there is one
       case where memory usage can be unexpectedly large. When a parenthesized
       subpattern has a quantifier with a minimum greater than 1 and/or a lim-
       ited  maximum,  the  whole subpattern is repeated in the compiled code.
       For example, the pattern

         (abc|def){2,4}

       is compiled as if it were

         (abc|def)(abc|def)((abc|def)(abc|def)?)?

       (Technical aside: It is done this way so that backtrack  points  within
       each of the repetitions can be independently maintained.)

       For  regular expressions whose quantifiers use only small numbers, this
       is not usually a problem. However, if the numbers are large,  and  par-
       ticularly  if  such repetitions are nested, the memory usage can become
       an embarrassment. For example, the very simple pattern

         ((ab){1,1000}c){1,3}

       uses 51K bytes when compiled. When PCRE is compiled  with  its  default
       internal  pointer  size of two bytes, the size limit on a compiled pat-
       tern is 64K, and this is reached with the above pattern  if  the  outer
       repetition is increased from 3 to 4. PCRE can be compiled to use larger
       internal pointers and thus handle larger compiled patterns, but  it  is
       better to try to rewrite your pattern to use less memory if you can.

       One  way  of reducing the memory usage for such patterns is to make use
       of PCRE's "subroutine" facility. Re-writing the above pattern as

         ((ab)(?2){0,999}c)(?1){0,2}

       reduces the memory requirements to 18K, and indeed it remains under 20K
       even  with the outer repetition increased to 100. However, this pattern
       is not exactly equivalent, because the "subroutine" calls  are  treated
       as  atomic groups into which there can be no backtracking if there is a
       subsequent matching failure. Therefore, PCRE cannot  do  this  kind  of
       rewriting  automatically.   Furthermore,  there is a noticeable loss of
       speed when executing the modified pattern. Nevertheless, if the  atomic
       grouping  is  not  a  problem and the loss of speed is acceptable, this
       kind of rewriting will allow you to process patterns that  PCRE  cannot
       otherwise handle.


PROCESSING TIME

       Certain  items  in regular expression patterns are processed more effi-
       ciently than others. It is more efficient to use a character class like
       [aeiou]   than   a   set   of  single-character  alternatives  such  as
       (a|e|i|o|u). In general, the simplest construction  that  provides  the
       required behaviour is usually the most efficient. Jeffrey Friedl's book
       contains a lot of useful general discussion  about  optimizing  regular
       expressions  for  efficient  performance.  This document contains a few
       observations about PCRE.

       Using Unicode character properties (the \p,  \P,  and  \X  escapes)  is
       slow,  because PCRE has to scan a structure that contains data for over
       fifteen thousand characters whenever it needs a  character's  property.
       If  you  can  find  an  alternative pattern that does not use character
       properties, it will probably be faster.

       When a pattern begins with .* not in  parentheses,  or  in  parentheses
       that are not the subject of a backreference, and the PCRE_DOTALL option
       is set, the pattern is implicitly anchored by PCRE, since it can  match
       only  at  the start of a subject string. However, if PCRE_DOTALL is not
       set, PCRE cannot make this optimization, because  the  .  metacharacter
       does  not then match a newline, and if the subject string contains new-
       lines, the pattern may match from the character  immediately  following
       one of them instead of from the very start. For example, the pattern

         .*second

       matches  the subject "first\nand second" (where \n stands for a newline
       character), with the match starting at the seventh character. In  order
       to do this, PCRE has to retry the match starting after every newline in
       the subject.

       If you are using such a pattern with subject strings that do  not  con-
       tain newlines, the best performance is obtained by setting PCRE_DOTALL,
       or starting the pattern with ^.* or ^.*? to indicate  explicit  anchor-
       ing.  That saves PCRE from having to scan along the subject looking for
       a newline to restart at.

       Beware of patterns that contain nested indefinite  repeats.  These  can
       take  a  long time to run when applied to a string that does not match.
       Consider the pattern fragment

         ^(a+)*

       This can match "aaaa" in 16 different ways, and this  number  increases
       very  rapidly  as the string gets longer. (The * repeat can match 0, 1,
       2, 3, or 4 times, and for each of those cases other than 0 or 4, the  +
       repeats  can  match  different numbers of times.) When the remainder of
       the pattern is such that the entire match is going to fail, PCRE has in
       principle  to  try  every  possible  variation,  and  this  can take an
       extremely long time, even for relatively short strings.

       An optimization catches some of the more simple cases such as

         (a+)*b

       where a literal character follows. Before  embarking  on  the  standard
       matching  procedure,  PCRE checks that there is a "b" later in the sub-
       ject string, and if there is not, it fails the match immediately.  How-
       ever,  when  there  is no following literal this optimization cannot be
       used. You can see the difference by comparing the behaviour of

         (a+)*\d

       with the pattern above. The former gives  a  failure  almost  instantly
       when  applied  to  a  whole  line of "a" characters, whereas the latter
       takes an appreciable time with strings longer than about 20 characters.

       In many cases, the solution to this kind of performance issue is to use
       an atomic group or a possessive quantifier.


AUTHOR

       Philip Hazel
       University Computing Service
       Cambridge CB2 3QH, England.


REVISION

       Last updated: 06 March 2007
       Copyright (c) 1997-2007 University of Cambridge.
------------------------------------------------------------------------------


PCREPOSIX(3)                                                      PCREPOSIX(3)


NAME
       PCRE - Perl-compatible regular expressions.


SYNOPSIS OF POSIX API

       #include <pcreposix.h>

       int regcomp(regex_t *preg, const char *pattern,
            int cflags);

       int regexec(regex_t *preg, const char *string,
            size_t nmatch, regmatch_t pmatch[], int eflags);

       size_t regerror(int errcode, const regex_t *preg,
            char *errbuf, size_t errbuf_size);

       void regfree(regex_t *preg);


DESCRIPTION

       This  set  of  functions provides a POSIX-style API to the PCRE regular
       expression package. See the pcreapi documentation for a description  of
       PCRE's native API, which contains much additional functionality.

       The functions described here are just wrapper functions that ultimately
       call  the  PCRE  native  API.  Their  prototypes  are  defined  in  the
       pcreposix.h  header  file,  and  on  Unix systems the library itself is
       called pcreposix.a, so can be accessed by  adding  -lpcreposix  to  the
       command  for  linking  an application that uses them. Because the POSIX
       functions call the native ones, it is also necessary to add -lpcre.

       I have implemented only those option bits that can be reasonably mapped
       to PCRE native options. In addition, the option REG_EXTENDED is defined
       with the value zero. This has no effect, but since  programs  that  are
       written  to  the  POSIX interface often use it, this makes it easier to
       slot in PCRE as a replacement library. Other POSIX options are not even
       defined.

       When  PCRE  is  called  via these functions, it is only the API that is
       POSIX-like in style. The syntax and semantics of  the  regular  expres-
       sions  themselves  are  still  those of Perl, subject to the setting of
       various PCRE options, as described below. "POSIX-like in  style"  means
       that  the  API  approximates  to  the POSIX definition; it is not fully
       POSIX-compatible, and in multi-byte encoding  domains  it  is  probably
       even less compatible.

       The  header for these functions is supplied as pcreposix.h to avoid any
       potential clash with other POSIX  libraries.  It  can,  of  course,  be
       renamed or aliased as regex.h, which is the "correct" name. It provides
       two structure types, regex_t for  compiled  internal  forms,  and  reg-
       match_t  for  returning  captured substrings. It also defines some con-
       stants whose names start  with  "REG_";  these  are  used  for  setting
       options and identifying error codes.


COMPILING A PATTERN

       The  function regcomp() is called to compile a pattern into an internal
       form. The pattern is a C string terminated by a  binary  zero,  and  is
       passed  in  the  argument  pattern. The preg argument is a pointer to a
       regex_t structure that is used as a base for storing information  about
       the compiled regular expression.

       The argument cflags is either zero, or contains one or more of the bits
       defined by the following macros:

         REG_DOTALL

       The PCRE_DOTALL option is set when the regular expression is passed for
       compilation to the native function. Note that REG_DOTALL is not part of
       the POSIX standard.

         REG_ICASE

       The PCRE_CASELESS option is set when the regular expression  is  passed
       for compilation to the native function.

         REG_NEWLINE

       The  PCRE_MULTILINE option is set when the regular expression is passed
       for compilation to the native function. Note that this does  not  mimic
       the  defined  POSIX  behaviour  for REG_NEWLINE (see the following sec-
       tion).

         REG_NOSUB

       The PCRE_NO_AUTO_CAPTURE option is set when the regular  expression  is
       passed for compilation to the native function. In addition, when a pat-
       tern that is compiled with this flag is passed to regexec() for  match-
       ing,  the  nmatch  and  pmatch  arguments  are ignored, and no captured
       strings are returned.

         REG_UTF8

       The PCRE_UTF8 option is set when the regular expression is  passed  for
       compilation  to the native function. This causes the pattern itself and
       all data strings used for matching it to be treated as  UTF-8  strings.
       Note that REG_UTF8 is not part of the POSIX standard.

       In  the  absence  of  these  flags, no options are passed to the native
       function.  This means the the  regex  is  compiled  with  PCRE  default
       semantics.  In particular, the way it handles newline characters in the
       subject string is the Perl way, not the POSIX way.  Note  that  setting
       PCRE_MULTILINE  has only some of the effects specified for REG_NEWLINE.
       It does not affect the way newlines are matched by . (they  aren't)  or
       by a negative class such as [^a] (they are).

       The  yield of regcomp() is zero on success, and non-zero otherwise. The
       preg structure is filled in on success, and one member of the structure
       is  public: re_nsub contains the number of capturing subpatterns in the
       regular expression. Various error codes are defined in the header file.


MATCHING NEWLINE CHARACTERS

       This area is not simple, because POSIX and Perl take different views of
       things.  It is not possible to get PCRE to obey  POSIX  semantics,  but
       then  PCRE was never intended to be a POSIX engine. The following table
       lists the different possibilities for matching  newline  characters  in
       PCRE:

                                 Default   Change with

         . matches newline          no     PCRE_DOTALL
         newline matches [^a]       yes    not changeable
         $ matches \n at end        yes    PCRE_DOLLARENDONLY
         $ matches \n in middle     no     PCRE_MULTILINE
         ^ matches \n in middle     no     PCRE_MULTILINE

       This is the equivalent table for POSIX:

                                 Default   Change with

         . matches newline          yes    REG_NEWLINE
         newline matches [^a]       yes    REG_NEWLINE
         $ matches \n at end        no     REG_NEWLINE
         $ matches \n in middle     no     REG_NEWLINE
         ^ matches \n in middle     no     REG_NEWLINE

       PCRE's behaviour is the same as Perl's, except that there is no equiva-
       lent for PCRE_DOLLAR_ENDONLY in Perl. In both PCRE and Perl,  there  is
       no way to stop newline from matching [^a].

       The   default  POSIX  newline  handling  can  be  obtained  by  setting
       PCRE_DOTALL and PCRE_DOLLAR_ENDONLY, but there is no way to  make  PCRE
       behave exactly as for the REG_NEWLINE action.


MATCHING A PATTERN

       The  function  regexec()  is  called  to  match a compiled pattern preg
       against a given string, which is terminated by a zero byte, subject  to
       the options in eflags. These can be:

         REG_NOTBOL

       The PCRE_NOTBOL option is set when calling the underlying PCRE matching
       function.

         REG_NOTEOL

       The PCRE_NOTEOL option is set when calling the underlying PCRE matching
       function.

       If  the pattern was compiled with the REG_NOSUB flag, no data about any
       matched strings  is  returned.  The  nmatch  and  pmatch  arguments  of
       regexec() are ignored.

       Otherwise,the portion of the string that was matched, and also any cap-
       tured substrings, are returned via the pmatch argument, which points to
       an  array  of nmatch structures of type regmatch_t, containing the mem-
       bers rm_so and rm_eo. These contain the offset to the  first  character
       of  each  substring and the offset to the first character after the end
       of each substring, respectively. The 0th element of the vector  relates
       to  the  entire portion of string that was matched; subsequent elements
       relate to the capturing subpatterns of the regular  expression.  Unused
       entries in the array have both structure members set to -1.

       A  successful  match  yields  a  zero  return;  various error codes are
       defined in the header file, of  which  REG_NOMATCH  is  the  "expected"
       failure code.


ERROR MESSAGES

       The regerror() function maps a non-zero errorcode from either regcomp()
       or regexec() to a printable message. If preg is  not  NULL,  the  error
       should have arisen from the use of that structure. A message terminated
       by a binary zero is placed  in  errbuf.  The  length  of  the  message,
       including  the  zero, is limited to errbuf_size. The yield of the func-
       tion is the size of buffer needed to hold the whole message.


MEMORY USAGE

       Compiling a regular expression causes memory to be allocated and  asso-
       ciated  with  the preg structure. The function regfree() frees all such
       memory, after which preg may no longer be used as  a  compiled  expres-
       sion.


AUTHOR

       Philip Hazel
       University Computing Service
       Cambridge CB2 3QH, England.


REVISION

       Last updated: 06 March 2007
       Copyright (c) 1997-2007 University of Cambridge.
------------------------------------------------------------------------------


PCRECPP(3)                                                          PCRECPP(3)


NAME
       PCRE - Perl-compatible regular expressions.


SYNOPSIS OF C++ WRAPPER

       #include <pcrecpp.h>


DESCRIPTION

       The  C++  wrapper  for PCRE was provided by Google Inc. Some additional
       functionality was added by Giuseppe Maxia. This brief man page was con-
       structed  from  the  notes  in the pcrecpp.h file, which should be con-
       sulted for further details.


MATCHING INTERFACE

       The "FullMatch" operation checks that supplied text matches a  supplied
       pattern  exactly.  If pointer arguments are supplied, it copies matched
       sub-strings that match sub-patterns into them.

         Example: successful match
            pcrecpp::RE re("h.*o");
            re.FullMatch("hello");

         Example: unsuccessful match (requires full match):
            pcrecpp::RE re("e");
            !re.FullMatch("hello");

         Example: creating a temporary RE object:
            pcrecpp::RE("h.*o").FullMatch("hello");

       You can pass in a "const char*" or a "string" for "text". The  examples
       below  tend to use a const char*. You can, as in the different examples
       above, store the RE object explicitly in a variable or use a  temporary
       RE  object.  The  examples below use one mode or the other arbitrarily.
       Either could correctly be used for any of these examples.

       You must supply extra pointer arguments to extract matched subpieces.

         Example: extracts "ruby" into "s" and 1234 into "i"
            int i;
            string s;
            pcrecpp::RE re("(\\w+):(\\d+)");
            re.FullMatch("ruby:1234", &s, &i);

         Example: does not try to extract any extra sub-patterns
            re.FullMatch("ruby:1234", &s);

         Example: does not try to extract into NULL
            re.FullMatch("ruby:1234", NULL, &i);

         Example: integer overflow causes failure
            !re.FullMatch("ruby:1234567891234", NULL, &i);

         Example: fails because there aren't enough sub-patterns:
            !pcrecpp::RE("\\w+:\\d+").FullMatch("ruby:1234", &s);

         Example: fails because string cannot be stored in integer
            !pcrecpp::RE("(.*)").FullMatch("ruby", &i);

       The provided pointer arguments can be pointers to  any  scalar  numeric
       type, or one of:

          string        (matched piece is copied to string)
          StringPiece   (StringPiece is mutated to point to matched piece)
          T             (where "bool T::ParseFrom(const char*, int)" exists)
          NULL          (the corresponding matched sub-pattern is not copied)

       The  function returns true iff all of the following conditions are sat-
       isfied:

         a. "text" matches "pattern" exactly;

         b. The number of matched sub-patterns is >= number of supplied
            pointers;

         c. The "i"th argument has a suitable type for holding the
            string captured as the "i"th sub-pattern. If you pass in
            NULL for the "i"th argument, or pass fewer arguments than
            number of sub-patterns, "i"th captured sub-pattern is
            ignored.

       CAVEAT: An optional sub-pattern that does  not  exist  in  the  matched
       string  is  assigned  the  empty  string. Therefore, the following will
       return false (because the empty string is not a valid number):

          int number;
          pcrecpp::RE::FullMatch("abc", "[a-z]+(\\d+)?", &number);

       The matching interface supports at most 16 arguments per call.  If  you
       need    more,    consider    using    the    more   general   interface
       pcrecpp::RE::DoMatch. See pcrecpp.h for the signature for DoMatch.


QUOTING METACHARACTERS

       You can use the "QuoteMeta" operation to insert backslashes before  all
       potentially  meaningful  characters  in  a string. The returned string,
       used as a regular expression, will exactly match the original string.

         Example:
            string quoted = RE::QuoteMeta(unquoted);

       Note that it's legal to escape a character even if it  has  no  special
       meaning  in  a  regular expression -- so this function does that. (This
       also makes it identical to the perl function  of  the  same  name;  see
       "perldoc    -f    quotemeta".)    For   example,   "1.5-2.0?"   becomes
       "1\.5\-2\.0\?".


PARTIAL MATCHES

       You can use the "PartialMatch" operation when you want the  pattern  to
       match any substring of the text.

         Example: simple search for a string:
            pcrecpp::RE("ell").PartialMatch("hello");

         Example: find first number in a string:
            int number;
            pcrecpp::RE re("(\\d+)");
            re.PartialMatch("x*100 + 20", &number);
            assert(number == 100);


UTF-8 AND THE MATCHING INTERFACE

       By  default,  pattern  and text are plain text, one byte per character.
       The UTF8 flag, passed to  the  constructor,  causes  both  pattern  and
       string to be treated as UTF-8 text, still a byte stream but potentially
       multiple bytes per character. In practice, the text is likelier  to  be
       UTF-8  than  the pattern, but the match returned may depend on the UTF8
       flag, so always use it when matching UTF8 text. For example,  "."  will
       match  one  byte normally but with UTF8 set may match up to three bytes
       of a multi-byte character.

         Example:
            pcrecpp::RE_Options options;
            options.set_utf8();
            pcrecpp::RE re(utf8_pattern, options);
            re.FullMatch(utf8_string);

         Example: using the convenience function UTF8():
            pcrecpp::RE re(utf8_pattern, pcrecpp::UTF8());
            re.FullMatch(utf8_string);

       NOTE: The UTF8 flag is ignored if pcre was not configured with the
             --enable-utf8 flag.


PASSING MODIFIERS TO THE REGULAR EXPRESSION ENGINE

       PCRE defines some modifiers to  change  the  behavior  of  the  regular
       expression   engine.  The  C++  wrapper  defines  an  auxiliary  class,
       RE_Options, as a vehicle to pass such modifiers to  a  RE  class.  Cur-
       rently, the following modifiers are supported:

          modifier              description               Perl corresponding

          PCRE_CASELESS         case insensitive match      /i
          PCRE_MULTILINE        multiple lines match        /m
          PCRE_DOTALL           dot matches newlines        /s
          PCRE_DOLLAR_ENDONLY   $ matches only at end       N/A
          PCRE_EXTRA            strict escape parsing       N/A
          PCRE_EXTENDED         ignore whitespaces          /x
          PCRE_UTF8             handles UTF8 chars          built-in
          PCRE_UNGREEDY         reverses * and *?           N/A
          PCRE_NO_AUTO_CAPTURE  disables capturing parens   N/A (*)

       (*)  Both Perl and PCRE allow non capturing parentheses by means of the
       "?:" modifier within the pattern itself. e.g. (?:ab|cd) does  not  cap-
       ture, while (ab|cd) does.

       For  a  full  account on how each modifier works, please check the PCRE
       API reference page.

       For each modifier, there are two member functions whose  name  is  made
       out  of  the  modifier  in  lowercase,  without the "PCRE_" prefix. For
       instance, PCRE_CASELESS is handled by

         bool caseless()

       which returns true if the modifier is set, and

         RE_Options & set_caseless(bool)

       which sets or unsets the modifier. Moreover, PCRE_EXTRA_MATCH_LIMIT can
       be  accessed  through  the  set_match_limit()  and match_limit() member
       functions. Setting match_limit to a non-zero value will limit the  exe-
       cution  of pcre to keep it from doing bad things like blowing the stack
       or taking an eternity to return a result.  A  value  of  5000  is  good
       enough  to stop stack blowup in a 2MB thread stack. Setting match_limit
       to  zero  disables  match  limiting.  Alternatively,   you   can   call
       match_limit_recursion()  which uses PCRE_EXTRA_MATCH_LIMIT_RECURSION to
       limit how much  PCRE  recurses.  match_limit()  limits  the  number  of
       matches PCRE does; match_limit_recursion() limits the depth of internal
       recursion, and therefore the amount of stack that is used.

       Normally, to pass one or more modifiers to a RE class,  you  declare  a
       RE_Options object, set the appropriate options, and pass this object to
       a RE constructor. Example:

          RE_options opt;
          opt.set_caseless(true);
          if (RE("HELLO", opt).PartialMatch("hello world")) ...

       RE_options has two constructors. The default constructor takes no argu-
       ments  and creates a set of flags that are off by default. The optional
       parameter option_flags is to facilitate transfer of legacy code from  C
       programs.  This lets you do

          RE(pattern,
            RE_Options(PCRE_CASELESS|PCRE_MULTILINE)).PartialMatch(str);

       However, new code is better off doing

          RE(pattern,
            RE_Options().set_caseless(true).set_multiline(true))
              .PartialMatch(str);

       If you are going to pass one of the most used modifiers, there are some
       convenience functions that return a RE_Options class with the appropri-
       ate  modifier  already  set: CASELESS(), UTF8(), MULTILINE(), DOTALL(),
       and EXTENDED().

       If you need to set several options at once, and you don't  want  to  go
       through  the pains of declaring a RE_Options object and setting several
       options, there is a parallel method that give you such ability  on  the
       fly.  You  can  concatenate several set_xxxxx() member functions, since
       each of them returns a reference to its class object. For  example,  to
       pass  PCRE_CASELESS, PCRE_EXTENDED, and PCRE_MULTILINE to a RE with one
       statement, you may write:

          RE(" ^ xyz \\s+ .* blah$",
            RE_Options()
              .set_caseless(true)
              .set_extended(true)
              .set_multiline(true)).PartialMatch(sometext);


SCANNING TEXT INCREMENTALLY

       The "Consume" operation may be useful if you want to  repeatedly  match
       regular expressions at the front of a string and skip over them as they
       match. This requires use of the "StringPiece" type, which represents  a
       sub-range  of  a  real  string.  Like RE, StringPiece is defined in the
       pcrecpp namespace.

         Example: read lines of the form "var = value" from a string.
            string contents = ...;                 // Fill string somehow
            pcrecpp::StringPiece input(contents);  // Wrap in a StringPiece

            string var;
            int value;
            pcrecpp::RE re("(\\w+) = (\\d+)\n");
            while (re.Consume(&input, &var, &value)) {
              ...;
            }

       Each successful call  to  "Consume"  will  set  "var/value",  and  also
       advance "input" so it points past the matched text.

       The  "FindAndConsume"  operation  is  similar to "Consume" but does not
       anchor your match at the beginning of  the  string.  For  example,  you
       could extract all words from a string by repeatedly calling

         pcrecpp::RE("(\\w+)").FindAndConsume(&input, &word)


PARSING HEX/OCTAL/C-RADIX NUMBERS

       By default, if you pass a pointer to a numeric value, the corresponding
       text is interpreted as a base-10  number.  You  can  instead  wrap  the
       pointer with a call to one of the operators Hex(), Octal(), or CRadix()
       to interpret the text in another base. The CRadix  operator  interprets
       C-style  "0"  (base-8)  and  "0x"  (base-16)  prefixes, but defaults to
       base-10.

         Example:
           int a, b, c, d;
           pcrecpp::RE re("(.*) (.*) (.*) (.*)");
           re.FullMatch("100 40 0100 0x40",
                        pcrecpp::Octal(&a), pcrecpp::Hex(&b),
                        pcrecpp::CRadix(&c), pcrecpp::CRadix(&d));

       will leave 64 in a, b, c, and d.


REPLACING PARTS OF STRINGS

       You can replace the first match of "pattern" in "str"  with  "rewrite".
       Within  "rewrite",  backslash-escaped  digits (\1 to \9) can be used to
       insert text matching corresponding parenthesized group  from  the  pat-
       tern. \0 in "rewrite" refers to the entire matching text. For example:

         string s = "yabba dabba doo";
         pcrecpp::RE("b+").Replace("d", &s);

       will  leave  "s" containing "yada dabba doo". The result is true if the
       pattern matches and a replacement occurs, false otherwise.

       GlobalReplace is like Replace except that it replaces  all  occurrences
       of  the  pattern  in  the string with the rewrite. Replacements are not
       subject to re-matching. For example:

         string s = "yabba dabba doo";
         pcrecpp::RE("b+").GlobalReplace("d", &s);

       will leave "s" containing "yada dada doo". It  returns  the  number  of
       replacements made.

       Extract  is like Replace, except that if the pattern matches, "rewrite"
       is copied into "out" (an additional argument) with substitutions.   The
       non-matching  portions  of "text" are ignored. Returns true iff a match
       occurred and the extraction happened successfully;  if no match occurs,
       the string is left unaffected.


AUTHOR

       The C++ wrapper was contributed by Google Inc.
       Copyright (c) 2007 Google Inc.


REVISION

       Last updated: 06 March 2007
------------------------------------------------------------------------------


PCRESAMPLE(3)                                                    PCRESAMPLE(3)


NAME
       PCRE - Perl-compatible regular expressions


PCRE SAMPLE PROGRAM

       A simple, complete demonstration program, to get you started with using
       PCRE, is supplied in the file pcredemo.c in the PCRE distribution.

       The program compiles the regular expression that is its first argument,
       and  matches  it  against the subject string in its second argument. No
       PCRE options are set, and default character tables are used. If  match-
       ing  succeeds,  the  program  outputs  the  portion of the subject that
       matched, together with the contents of any captured substrings.

       If the -g option is given on the command line, the program then goes on
       to check for further matches of the same regular expression in the same
       subject string. The logic is a little bit tricky because of the  possi-
       bility  of  matching an empty string. Comments in the code explain what
       is going on.

       If PCRE is installed in the standard include  and  library  directories
       for  your  system, you should be able to compile the demonstration pro-
       gram using this command:

         gcc -o pcredemo pcredemo.c -lpcre

       If PCRE is installed elsewhere, you may need to add additional  options
       to  the  command line. For example, on a Unix-like system that has PCRE
       installed in /usr/local, you  can  compile  the  demonstration  program
       using a command like this:

         gcc -o pcredemo -I/usr/local/include pcredemo.c \
             -L/usr/local/lib -lpcre

       Once  you  have  compiled the demonstration program, you can run simple
       tests like this:

         ./pcredemo 'cat|dog' 'the cat sat on the mat'
         ./pcredemo -g 'cat|dog' 'the dog sat on the cat'

       Note that there is a  much  more  comprehensive  test  program,  called
       pcretest,  which  supports  many  more  facilities  for testing regular
       expressions and the PCRE library. The pcredemo program is provided as a
       simple coding example.

       On some operating systems (e.g. Solaris), when PCRE is not installed in
       the standard library directory, you may get an error like this when you
       try to run pcredemo:

         ld.so.1:  a.out:  fatal:  libpcre.so.0:  open failed: No such file or
       directory

       This is caused by the way shared library support works  on  those  sys-
       tems. You need to add

         -R/usr/local/lib

       (for example) to the compile command to get round this problem.


AUTHOR

       Philip Hazel
       University Computing Service
       Cambridge CB2 3QH, England.


REVISION

       Last updated: 06 March 2007
       Copyright (c) 1997-2007 University of Cambridge.
------------------------------------------------------------------------------
PCRESTACK(3)                                                      PCRESTACK(3)


NAME
       PCRE - Perl-compatible regular expressions


PCRE DISCUSSION OF STACK USAGE

       When  you call pcre_exec(), it makes use of an internal function called
       match(). This calls itself recursively at branch points in the pattern,
       in  order to remember the state of the match so that it can back up and
       try a different alternative if the first one fails.  As  matching  pro-
       ceeds  deeper  and deeper into the tree of possibilities, the recursion
       depth increases.

       Not all calls of match() increase the recursion depth; for an item such
       as  a* it may be called several times at the same level, after matching
       different numbers of a's. Furthermore, in a number of cases  where  the
       result  of  the  recursive call would immediately be passed back as the
       result of the current call (a "tail recursion"), the function  is  just
       restarted instead.

       The pcre_dfa_exec() function operates in an entirely different way, and
       hardly uses recursion at all. The limit on its complexity is the amount
       of  workspace  it  is  given.  The comments that follow do NOT apply to
       pcre_dfa_exec(); they are relevant only for pcre_exec().

       You can set limits on the number of times that match() is called,  both
       in  total  and  recursively. If the limit is exceeded, an error occurs.
       For details, see the section on  extra  data  for  pcre_exec()  in  the
       pcreapi documentation.

       Each  time  that match() is actually called recursively, it uses memory
       from the process stack. For certain kinds of  pattern  and  data,  very
       large  amounts of stack may be needed, despite the recognition of "tail
       recursion".  You can often reduce the amount of recursion,  and  there-
       fore  the  amount of stack used, by modifying the pattern that is being
       matched. Consider, for example, this pattern:

         ([^<]|<(?!inet))+

       It matches from wherever it starts until it encounters "<inet"  or  the
       end  of  the  data,  and is the kind of pattern that might be used when
       processing an XML file. Each iteration of the outer parentheses matches
       either  one  character that is not "<" or a "<" that is not followed by
       "inet". However, each time a  parenthesis  is  processed,  a  recursion
       occurs, so this formulation uses a stack frame for each matched charac-
       ter. For a long string, a lot of stack is required. Consider  now  this
       rewritten pattern, which matches exactly the same strings:

         ([^<]++|<(?!inet))+

       This  uses very much less stack, because runs of characters that do not
       contain "<" are "swallowed" in one item inside the parentheses.  Recur-
       sion  happens  only when a "<" character that is not followed by "inet"
       is encountered (and we assume this is relatively  rare).  A  possessive
       quantifier  is  used  to stop any backtracking into the runs of non-"<"
       characters, but that is not related to stack usage.

       This example shows that one way of avoiding stack problems when  match-
       ing long subject strings is to write repeated parenthesized subpatterns
       to match more than one character whenever possible.

       In environments where stack memory is constrained, you  might  want  to
       compile  PCRE to use heap memory instead of stack for remembering back-
       up points. This makes it run a lot more slowly, however. Details of how
       to do this are given in the pcrebuild documentation.

       In  Unix-like environments, there is not often a problem with the stack
       unless very long strings are involved,  though  the  default  limit  on
       stack  size  varies  from system to system. Values from 8Mb to 64Mb are
       common. You can find your default limit by running the command:

         ulimit -s

       Unfortunately, the effect of running out of  stack  is  often  SIGSEGV,
       though  sometimes  a more explicit error message is given. You can nor-
       mally increase the limit on stack size by code such as this:

         struct rlimit rlim;
         getrlimit(RLIMIT_STACK, &rlim);
         rlim.rlim_cur = 100*1024*1024;
         setrlimit(RLIMIT_STACK, &rlim);

       This reads the current limits (soft and hard) using  getrlimit(),  then
       attempts  to  increase  the  soft limit to 100Mb using setrlimit(). You
       must do this before calling pcre_exec().

       PCRE has an internal counter that can be used to  limit  the  depth  of
       recursion,  and  thus cause pcre_exec() to give an error code before it
       runs out of stack. By default, the limit is very  large,  and  unlikely
       ever  to operate. It can be changed when PCRE is built, and it can also
       be set when pcre_exec() is called. For details of these interfaces, see
       the pcrebuild and pcreapi documentation.

       As a very rough rule of thumb, you should reckon on about 500 bytes per
       recursion. Thus, if you want to limit your  stack  usage  to  8Mb,  you
       should  set  the  limit at 16000 recursions. A 64Mb stack, on the other
       hand, can support around 128000 recursions. The pcretest  test  program
       has a command line option (-S) that can be used to increase the size of
       its stack.


AUTHOR

       Philip Hazel
       University Computing Service
       Cambridge CB2 3QH, England.


REVISION

       Last updated: 12 March 2007
       Copyright (c) 1997-2007 University of Cambridge.
------------------------------------------------------------------------------

by 뭔일이여 2007. 4. 27. 17:19

패턴 변경자
패턴 변경자 -- 정규표현식 패턴에 존재하는 변경자의 설명
설명
아래 목록은 현재 존재하는 PCRE 변경자입니다. 괄호 안의 이름은 각 변경자에 대한 PCRE 내부의 이름입니다. 


i (PCRE_CASELESS)
이 변경자를 지정하면, 패턴의 문자는 대문자와 소문자를 구별하지 않습니다. 

m (PCRE_MULTILINE)
기본적으로, PCRE는 주어진 문자열을 하나의 "줄"로 취급합니다. (실제로 몇개의 라인을 가지더라도) "줄 시작" 메타문자(^)는 문자열의 처음만을 인식하며, "줄 끝" 메타문자($)는 문자열의 끝이나 (D 변경자가 지정되지 않는 한) 마지막 뉴라인의 직전만을 인식합니다. 이는 펄과 같습니다. 

이 변경자를 지정하면, "줄 시작"과 "줄 끝"은 주어진 문자열의 모든 뉴라인 직후와 직전을 인식합니다. respectively, as well as at the very start and end. 이는 펄의 /m 변경자와 동일합니다. 주어진 문자열에 "n" 문자가 존재하지 않거나 ^나 $ 패턴이 일어나지 않으면 이 변경자는 아무런 효과가 없습니다. 

s (PCRE_DOTALL)
이 변경자가 지정되면, 패턴의 점 메타문자는 뉴라인을 포함하는 모든 문자를 인식합니다. 지정하지 않으면, 뉴라인은 제외됩니다. 이 변경자는 펄의 /s 변경자와 동일합니다. [^a]와 같은 부정클래스는 이 변경자에 관계 없이 항상 뉴라인 문자를 포함합니다. 

x (PCRE_EXTENDED)
이 변경자가 지정되면, 공백 문자는 이스케이프 되거나 문자 클래스 안에 있을 경우를 제외하고, 완전히 무시합니다. 문자 클래스 밖에서 이스케이프 되지 않은 # 사이와 뉴라인 문자 다음의 문자도 무시합니다. 이는 펄의 /x 변경자와 같고, 복잡한 패턴 안에 코멘트를 사용할 수 있게 합니다. 그러나 이는 데이터 문자에만 해당하는 점에 주의하십시오. 공백 문자는 패턴의 특별한 문자 시퀀스 안에는 존재할 수 없습니다. 예를 들면, 조건 서브 패턴을 나타내는 (?( 시퀀스에는 나와서는 안됩니다. 

e
이 변경자를 지정하면, preg_replace()는 변경할 문자열을 PHP 코드로 처리하고, 그 결과를 검색된 문자열의 이용하여 일반적인 치환을 합니다. 

preg_replace()만 이 변경자를 사용합니다; 다른 PCRE 함수는 무시합니다. 

참고: 이 변경자는 PHP 3에서는 사용할 수 없습니다. 


A (PCRE_ANCHORED)
이 변경자를 지정하면, 패턴을 강제적으로 "고정"합니다. 이는 ("주어진 문자열"에서) 검색된 문자열의 시작에만 매치도록 강제합니다. 패턴 자체에서 특정한 구조를 가지게 하는, 펄에서는 유일한 방법으로 같은 효과를 얻을 수 있습니다. 

D (PCRE_DOLLAR_ENDONLY)
이 변경자가 설정되면, 패턴의 달러($) 메타문자는 주어진 문자열의 마지막에만 대응합니다. 이 변경자 없이는, 달러는 마지막 문자가 뉴라인일 경우에는 바로 직전의 문자에도 매칭합니다. (마지막이 아닌 뉴라인은 제외합니다) 이 변경자는 m 변경자가 지정되었을때는 무시됩니다. 펄에는 이 변경자가 존재하지 않습니다. 

S
패턴이 여러번 이용되면, 매칭에 걸리는 시간을 절약하기 위해서 분석에 더 많은 시간을 들일 가치가 있습니다. 이 변경자를 지정하면, 추가 분석을 행합니다. 현 시점에서, 패턴의 분석은 하나의 고정된 시작 문자를 가지지 않는 비고정 패턴에만 유용합니다. 

U (PCRE_UNGREEDY)
이 변경자는 수량 지시의 "greediness"를 뒤집습니다. 그리하여 기본값으로 not greedy하게 합니다. 하지만 "?"가 붙으면 greedy하게 됩니다. 이는 펄과 호환되지 않습니다. 패턴 안에서 (?U) 변경자 설정으로 지정할 수 있습니다. 

X (PCRE_EXTRA)
이 변경자는 펄과 호환되지 않는 PCRE의 추가 기능을 사용하게 합니다. 패턴의 문자와 결합된 백슬래쉬가 특별한 의미를 지니지 않을 경우에 에러를 발생시켜서, 차후에 추가 기능을 위해 예약해둡니다. 기본적으로 펄은, 문자와 결합된 백슬래쉬가 특별한 의미를 지니지 않을 경우에는 글자로 취급합니다. 이 변경자는 다른 기능을 제어하지 않습니다. 

u (PCRE_UTF8)
이 변경자는 펄과 호환되지 않는 PCRE의 추가 기능을 사용하게 합니다. 패턴 문자열을 UTF-8으로 취급합니다. 유닉스에서는 PHP 4.1.0부터, win32에서는 PHP 4.2.3부터 사용할 수 있습니다. 


/////////////////////////////////////////////////////////////////////////////////////////////

패턴 문법
패턴 문법 -- PCRE 정규표현식 문법 설명
설명
PCRE 라이브러리는 아주 약간의 차이(아래를 참고)를 제외하고, 펄 5와 동일한 구문과 의미를 사용하여 정규표현식 패턴 매칭을 수행하는 함수의 집합입니다. 현재 수행은 펄 5.005에 대응합니다. 

펄과의 차이
여기에서 설명한 차이는 펄 5.005 기준입니다. 


PCRE는 다른 문자 집합으로 컴파일할 수 있지만, 기본적으로 공백 문자는 C 라이브러리 함수 isspace()가 인식하는 모든 문자입니다. 보통 isspace()는 스페이스, 폼피드, 줄바꿈, 캐리지 리턴, 수평 탭, 수직 탭을 인식합니다. 펄 5는 공백 문자에 수직 탭을 포함하지 않습니다. 오랜 기간동안 펄 문서의 v 이스케이프는 사실상 인정되지 않았습니다. 그러나 문자 자체는 적어도 5.002까지 공백으로 취급되었으며, 5.004와 5.005는 s에서 인식하지 않습니다. 

PCRE는 lookahead 단정에서 반복 횟수를 허용하지 않습니다. 펄은 허용하지만, 생각하는 그대로의 의미를 갖지 않습니다. 예를 들어, (?!a){3}는 다음 세 문자가 "a"가 아닌 것을 의미하지 않습니다. 단지, 다음 문자가 "a"가 아니라는 것을 세번 확인할 뿐입니다. 

부정 lookahead 단정 안에서 일어나는 서브패턴 검출을 카운트를 하지만, 시작 위치 벡터에 그 엔트리를 설정하지는 않습니다. 펄은 부정 lookahead 단정이 단 하나의 브랜치를 가지고 있을 경우에 한하여, 그 단정이 매치에 실패(결과적으로 성공)하기 전에 매치한 어떠한 패턴에 대해서만 그에 대한 숫자 변수를 설정합니다. 

바이너리 제로 문자는 목표 문자열에서는 지원하지만, 패턴 문자열에서는 허용하지 않습니다. 패턴은 제로로 종료하는 보통의 C 문자열로 처리하기 때문입니다. 패턴에서 바이너리 제로를 표현하기 위해서는 이스케이프 시퀀스 "\x00"로 사용할 수 있습니다. 

다음의 펄 이스케이프 시퀀스는 지원하지 않습니다: l, u, L, U, E, Q. 사실, 이들은 펄의 일반 문자열 핸들링이며, 패턴 매칭 엔진의 부분이 아닙니다. 

펄의 G는 싱글 패턴 매치에 적절하지 않기 때문에 지원하지 않습니다. 

당연하게도, PCRE는 (?{code}) 구조를 지원하지 않습니다. 

패턴의 일부가 반복될 때, 잡아낸 문자열의 설정에 관해서, 펄 5.005_02에서 일부 이상한 동작이 존재합니다. 예를 들어, "aba"에 대해서 패턴 /^(a(b)?)+$/를 매칭하면 $2를 "b" 값으로 설정하지만, "aabbaa"에 대해서 /^(aa(bb)?)+$/를 매칭하면 $2를 설정하지 않습니다. 하지만 패턴을 /^(aa(b(b))?)+$/로 변경하면 $2(와 $3)를 설정합니다. 펄 5.004에서는 $2를 두 경우 모두 설정했으며, PCRE에서도 TRUE입니다. 앞으로 펄이 이 차이를 일관성 있게 변경한다면, PCRE는 그 변경에 따를 것입니다. 

또다른 해결되지 않은 모순점은 펄 5.005_02가 패턴 /^(a)?(?(1)a|b)+$/를 문자열 "a"에 매치하지만, PCRE는 하지 않습니다. 그러나 펄과 PCRE 모두 /^(a)?a/를 "a"에 매치하고 $1을 설정하지 않습니다. 

PCRE는 펄 정규표현식 기능의 몇가지 확장을 지원합니다: 


lookbehind 단정은 고정 길이 문자열에만 매치해야하지만, 양자 택일의 lookbehind 단정에서는 다른 길이의 문자열을 매치할 수 있습니다. 펄 5.005에서는 모두 같은 길이를 가질 것을 요구합니다. 

PCRE_DOLLAR_ENDONLY를 설정하고 PCRE_MULTILINE를 설정하지 않으면 $ 메타 문자는 문자열의 가장 마지막에만 매치합니다. 

PCRE_EXTRA를 설정하면, 백슬래쉬 뒤에 특별한 의미를 가지지 않는 문자의 사용은 실패하게 됩니다. 

PCRE_UNGREEDY를 설정하면, 반복 수량어의 greediness가 뒤집어져서, 기본값으로 greedy하지 않게 됩니다. 하지만 뒤에 물음표가 붙으면 greedy하게 됩니다. 


정규표현식 상세
소개
아래 설명은 PCRE가 지원하는 정규표현식의 문법과 의미입니다. 정규표현식은 펄 문서 및 많은 책들에 설명이 있으며, 그 중 일부에는 풍부한 예제를 가지고 있습니다. O'Reilly에서 출판한 Jeffrey Friedl의 "Mastering Regular Expressions"(ISBN 1-56592-257-3)는 예제들을 매우 자세하게 다루고 있습니다. 여기의 설명은 레퍼런스 문서에 따릅니다. 

정규표현식은 주어진 문자열에 대하여 왼쪽에서 오른쪽으로 매치하는 패턴입니다. 문자열은 패턴으로 준비하고, 목표에서 대응하는 문자열에 매치합니다. 간단한 예로, 패턴 The quick brown fox는 목표 문자열의 동일한 부분에 매치합니다. 

메타 문자
정규표현식이 강력한 이유는 패턴에 선택과 반복을 포함할 수 있다는 점입니다. 이는 특별한 방법으로 해석하는 메타 문자를 사용하여 패턴에 넣습니다. 

메타 문자는 두가지 종류가 존재합니다: 대괄호 안을 제외하고 패턴의 어디에서라도 작동하는 종류와, 대괄호 안에서만 작동하는 종류입니다. 다음은 대괄호 밖에서 사용하는 메타 문자들입니다. 


여러가지로 사용하는 일반적인 이스케이프 문자 

^
목표의 처음 (멀티라인 모드에서는 줄의 처음) 

$
목표의 마지막 (멀티라인 모드에서는 줄의 끝) 

.
(기본값으로) 줄바꿈을 제외한 아무 문자 

[
클래스 정의 시작 문자 

]
클래스 정의 끝 문자 

|
선택 브랜치 시작 

(
서브패턴 시작 

)
서브패턴 끝 

?
( 의미 확장, 또는 0회나 1회, 또는 수량어 minimizer 

*
0회 이상의 횟수 

+
1회 이상의 횟수 

{
최소/최대 횟수 시작 

}
최소/최대 횟수 끝 

대괄호 안쪽의 패턴은 "문자 클래스"라고 부릅니다. 다음은 문자 클래스에서 사용하는 메타 문자들입니다: 


일반적인 이스케이프 문자 

^
처음 문자로 올 때, 부정 클래스로 설정 

-
문자 범위 지정 

]
문자 클래스 종료 

다음 섹션은 각 메타 문자의 사용을 설명합니다. 

백슬래쉬
백슬래쉬 문자는 여러가지 사용법을 가집니다. 먼저, 뒤에 영숫자가 아닌 문자가 붙는다면, 그 문자가 가지고 있는 특별한 의미가 사라집니다. 이러한 이스케이프 문자로 백슬래쉬를 사용하는 것은 문자 클래스 안과 밖 양쪽에 모두 적용됩니다. 

예를 들어, "*" 문자를 매치하길 원한다면, 패턴에는 "*"로 써야합니다. 이는 따라오는 문자가 메타 문자이던 아니던간에 관계 없이 적용하기 &#46468;문에, 영숫자가 아닌 문자에 그 자체를 사용하기 위해 ""를 붙이는 것이 항상 안전합니다. 특히, 백슬래쉬를 매치하고자 한다면, "\"로 써야합니다. 

패턴에 PCRE_EXTENDED 옵션을 사용하면, 패턴에 존재하는 (문자 클래스 안이 아닌) 공백, 그리고 문자 클래스 밖의 "#"사이의 문자와 바로 뒤의 줄바꿈 문자를 무시합니다. 이스케이프하는 백슬래쉬를 공백이나 "#"문자를 패턴에 넣기 위해 사용할 수 있습니다. 

백슬래쉬의 두번째 사용법은 패턴에서 출력할 수 없는 문자를 보여지게 인코딩하는 방법을 제공합니다. 바이너리 제로가 패턴 종료를 의미하는걸 제외하면, 출력할 수 없는 문자가 나타나는 제한은 존재하지 않습니다. 그러나 패턴을 텍스트 편집으로 준비할 때는, 다음의 이스케이프 시퀀스를 사용하는 편이 바이너리 문자를 직접 표현하는 것보다 간편합니다: 


a
알람, BEL 문자(hex 07) 

cx
"control-x", x는 임의의 문자 

e
이스케이프 (hex 1B) 

f
폼피드 (hex 0C) 

n
줄바꿈 (hex 0A) 

r
캐리지 리턴 (hex 0D) 

t
탭 (hex 09) 

xhh
16진 코드 hh 문자 

ddd
8진 코드 ddd 문자, 혹은 역참조 


"cx"의 효과는 다음과 같이 계산합니다: "x"가 소문자라면, 대문자로 변환합니다. 그 후, 문자의 6번째 비트(hex 40)가 뒤집어집니다. 즉 "cz"은 hex 1A가 되고, "c{"은 hex 3B, 그리고 "c;"은 hex 7B가 됩니다. 

"x" 뒤에, 두개의 16진 숫자를 읽습니다. (대소문자는 구별하지 않습니다) 

""은 다음의 두자리의 8진수를 읽습니다. 양쪽 모두, 두자리가 되지 않을 경우, 그 표현을 그대로 사용합니다. 즉 "x7" 시퀀스는 두개의 바이너리 제로에 이어지는 BEL 문자를 정의합니다. 바로 뒤에 8진수로 인식되는 문자가 이어질 경우에는 처음의 제로 뒤에 두자리 수를 써야한다는 것을 잊지 마십시오. 

백슬래쉬 뒤에 0이 아닌 수가 올 경우에 혼동할 수 있습니다. 문자 클래스 밖에서, PCRE는 그것과 따라오는 수를 10진수로 읽습니다. 수가 10보다 작거나, 표현식에서 수 이상의 묶음을 잡아냈다면, 이 시퀀스는 역참조가 됩니다. 이 작동에 관해서는 아래에, 묶음 서브패턴에 설명이 있습니다. 

문자 클래스 안이나, 10진수 9 이상이 없고 서브패턴이 그만큼 존재하지 않을 경우, PCRE는 백슬래쉬 뒤의 세자리 8진수로 다시 읽어들여, 해당하는 8비트 값으로 하나의 바이트를 생성합니다. 어떠한 수라도 사용할 수 있습니다. 예를 들면: 


40
스페이스의 다른 표현 방법 

40
40개 미만의 서브 패턴을 검출하였을때, 동일한 의미 

7
항상 역참조 

11
역참조, 혹은 탭의 다른 표현 방법 

11
항상 탭 

113
문자 "3"이 따라오는 탭 

113
8진 코드 113 문자 (역참조는 99까지입니다) 

377
1비트만을 제외한 바이트 

81
역참조이거나 "8"과 "1"의 두 문자가 붙는 바이너리 제로 


100이상의 8진 값은 앞에 제로가 붙지 않아야만 합니다. 세자리를 넘어가는 8진 값은 읽지 않습니다. 

하나의 바이트값을 정의하는 모든 시퀀스는 문자 클래스 내외, 어디에서도 사용할 수 있습니다. 추가로, 문자 클래스 안에서 "b" 시퀀스는 백스페이스 문자(hex 08)로 해석합니다. 문자 클래스 밖에서는 다른 의미를 가집니다. (아래를 참고) 

백슬래쉬의 세번째 사용법은 일반적인 문자 타입의 지정입니다: 


d
임의의 10진 숫자 

D
10진 숫자가 아닌 임의의 문자 

s
임의의 공백 문자 

S
공백이 아닌 임의의 문자 

w
임의의 "word" 문자 

W
임의의 "non-word" 문자 


각 이스케이프 시퀀스 조합은 완전한 문자 세트를 두개의 개별 세트로 분리합니다. 주어진 문자는 각 조합의 한쪽에만 매치합니다. 

"word" 문자는 어떠한 문자나 숫자, 혹은 언더스코어(_)입니다. 즉, 펄의 "word"에 해당하는 어떠한 문자입니다. 문자와 숫자의 정의는 PCRE의 문자 테이블이 제어하고, 로케일 특정 매칭이 존재할 경우에는 다양할 수 있습니다. (위쪽의 "로케일 지원" 참고) 예를 들어, "fr"(프랑스어) 로케일에서는, 128 이상의 몇몇 코드를 엑센트 문자를 나타내는데 사용하며, 이들은 w에 매치합니다. 

문자형 시퀀스는 문자 클래스 안과 밖에서 모두 사용할 수 있습니다. 각각 해당하는 형의 한 문자에 매치합니다. 현재 매칭 위치가 목표 문자열의 마지막이라면, 전부 실패하고, 어떠한 문자도 매치하지 않습니다. 

백슬래쉬의 네번째 사용법은 간단한 단정입니다. 단정은 조건이 목표 문자열에서 다른 부분에 매치하지 않고, 특정한 위치에만 매치하도록 지정합니다. 복잡한 단정을 위한 서브패턴의 사용법은 아래에 설명이 있습니다. 백슬래쉬 단정은 다음과 같습니다. 


b
word 경계 

B
word 경계가 아님 

A
목표의 처음 (멀티라인 모드와 무관) 

Z
목표의 마지막이나 마지막에서 줄바꿈 (멀티라인 모드와 무관) 

z
목표의 마지막 (멀티라인 모드와 무관) 


단정은 문자 클래스 안에서 사용할 수 없습니다. ("b"가 문자 클래스 안에서는 백스페이스 문자를 나타내는 점에 주의하십시오) 

word 경계는 현재 문자와 이전 문자가 둘 다 w에 매치하지 않거나 둘 다 W에 매치하지 않는 (즉, 하나는 w에 매치하고 다른 하나는 W에 매치) 목표 문자열의 위치이거나, 처음이나 마지막 문자가 w에 매치할 경우는 문자열의 처음이나 마지막입니다. 

A, Z, z 단정은 전통적인 circumflex와 달러와는 달리 옵션과 관계 없이 목표 문자열의 가장 처음이나 가장 마지막에만 매치합니다. 이들은 PCRE_MULTILINE이나 PCRE_DOLLAR_ENDONLU 옵션에 영향을 받지 않습니다. Z와 z의 차이는, Z가 문자열의 마지막뿐만 아니라 문자열 마지막 문자가 줄바꿈일 경우에는 바로 앞에도 매치하지만, z는 마지막에만 매치합니다. 

Circumflex와 달러
문자열 클래스의 밖, 기본 매칭 모드에서는 circumflex 문자는 현재 매칭 위치가 목표 문자열의 시작일 경우에만 성공하는 단정입니다. 문자열 클래스 안에서 cicumflex는 완전히 다른 의미를 가집니다. (아래 참고) 

여러 개의 선택을 가질 경우 circumflex는 패턴의 처음 문자일 필요가 없지만, 패턴이 그 브랜치에 처음 매치할 경우를 나타내는 각 선택에서의 처음 문자여야 합니다. 모든 선택이 circumflex로 시작하는, 목표의 처음에만 매치하는 패턴은 "고정" 패턴이라 불려집니다. (패턴을 고정하는 다른 구조도 존재합니다) 

달러 문자는 매칭 위치가 목표 문자열의 마지막이거나, (기본값으로) 문자열 마지막 줄바꿈의 바로 전에 해당하는 경우에만 TRUE인 단정입니다. 선택을 가지는 패턴에서는 달러가 패턴의 마지막일 필요가 없지만, 마지막을 나타내는 모든 브랜치에서 마지막 문자여야 합니다. 달러는 문자 클래스 안에서는 특별한 의미를 가지지 않습니다. 

달러의 의미는 컴파일시나 매치를 할 때 PCRE_DOLLAR_ENDONLY 옵션을 설정해서 문자열의 마지막에만 매치하도록 변경할 수 있습니다. 이는 Z 단정에는 영향을 주지 않습니다. 

PCRE_MULTILINE 옵션을 설정하면, circumflex와 달러 문자의 의미가 달라집니다. 이 경우, 목표 문자열의 처음과 마지막에 더하여, 내부의 "n" 문자의 뒤와 앞에도 매치합니다. 예를 들어, 패턴 /^abc$/는 멀티라인 모드에서는 목표 문자열 "defnabc"에 매치하지만, 그렇지 않다면 매치하지 않습니다. 따라서, 모든 브랜치가 "^"로 시작하는 브랜치는 단일라인 모드에서는 고정이지만, 멀티라인 모드에서는 고정이 아닙니다. PCRE_MULTILINE을 설정하면, PCRE_DOLLOR_ENDONLY 옵션을 무시합니다. 

어떤 모드에서라도 A, Z, z 시퀀스는 목표의 처음과 마지막에 매치할 때 사용할 수 있습니다. PCRE_MULTILINE에 관계 없이 모든 브랜치가 A로 시작하는 패턴은 항상 고정입니다. 

마침표
문자 클래스 밖에서, 패턴의 마침표는 패턴의 아무 문자에 매치합니다. 출력할 수 없는 문자도 포함하지만, (기본값으로) 줄바꿈은 포함하지 않습니다. PCRE_DOTALL 옵션을 설정하면, 마침표가 줄바꿈에도 매치합니다. 마침표의 처리는 circumflex와 달러의 처리와는 완전히 독립이며, 유일한 관계는 두 경우 모두 줄바꿈 문자에 해당한다는 점입니다. 마침표는 문자 클래스 안에서는 특별한 의미를 가지지 않습니다. 

대괄호
여는 대괄호로 문자 클래스를 시작하고, 닫는 대괄호로 종료합니다. 닫는 대괄호는 그 자체로는 특별한 의미가 없습니다. 닫는 대괄호를 클래스의 멤버로 사용하려면 클래스의 가장 처음(존재한다면 시작 circumflex 뒤에)에 위치하거나 백슬래쉬로 이스케이프해야 합니다. 

문자 클래스는 목표에서 하나의 문자에 매치합니다; 그 문자는 클래스가 정의하는 문자 세트에 존재해야 합니다. 클래스가 circumflex로 시작할 경우에는, 목표 문자는 클래스 정의 세트에 존재하지 않아야 합니다. circumflex가 클래스 멤버로 필요할 때는, 처음에 위치시키지 않거나 백슬래쉬로 이스케이프해야 합니다. 

예를 들면, 문자 클래스 [aeiou]는 모든 소문자 모음에 매치하지만, [^aeiow]는 소문자 모음이 아닌 모든 문자에 매치합니다. circumflex는 단지 클래스에 존재하는 문자가 아닌 것들을 지정하는 편리한 방법일 뿐이라는 점에 주의하십시오. 단정이 아닙니다: 목표 문자열에서 문자를 찾아내며, 현재 위치가 문자열의 끝이면 실패합니다. 

대소문자를 구별하지 않는 매칭을 설정하면, 클래스 안의 모든 문자는 대문자와 소문자 모두 매치합니다. 예를 들면, 대소문자 구별 없는 [aeiou]는 "a"와 함께 "A"도 매치하며, 대소문자 구별 없는 [^aeiou]는 구별하는 버전일 경우 매치하는 "A"에는 매치하지 않습니다. 

줄바꿈 문자는 PCRE_DOTALL나 PCRE_MULTILINE 옵션의 설정에 관계 없이, 문자 클래스 안에서 특별한 방법으로 취급하지 않습니다. [^a]와 같은 클래스는 항상 줄바꿈에 매치합니다. 

빼기(하이픈) 문자는 문자 클래스에서 문자의 범위를 지정하는데 사용할 수 있습니다. 예를 들어, [d-m]은 d부터 m까지의 모든 문자에 매치합니다. 빼기 문자가 클래스에서 필요하면, 백슬래쉬로 이스케이프하거나, 클래스의 맨 처음이나 마지막처럼 범위로 해석할 수 없는 위치에 나타나야 합니다. 

문자 "]"를 범위의 마지막으로 지정하는 것은 불가능합니다. [W-]46]과 같은 패턴은 두 문자를 가지는 클래스("W"와 "-") 뒤에 일반 문자열 "46]"이 붙는 형태로 해석합니다. 그러므로 "W46]"이나 "-46]"에 매치합니다. 그러나, "]"를 백슬래쉬로 이스케이프하면 범위의 끝으로 해석하기에, [W-]46]은 범위와 두개의 개별 문자를 가지는 하나의 클래스로 해석합니다. 범위의 마지막으로 "]"의 8진수 및 16진수 표현을 사용할 수도 있습니다. 

범위는 아스키 순서에 따라 정해집니다. [00-37]처럼 숫자로 지정한 문자를 사용할 수도 있습니다. 대소문자 구별 없는 매칭을 설정하면, 범위 안의 문자들도 대소문자 구별 없이 매칭합니다. 예를 들면, [W-c]는 대소문자 구별 없는 [][^_`wxyzabc]와 동일하며, "fr" 로케일의 문자표를 사용하면, [xc8-xcb]는 대소문자 구별 없이 엑센트 E 문자에 매치합니다. 

문자형 d, D, s, S, w, W도 문자 클래스에서 사용할 수 있고, 해당하는 문자들을 클래스에 추가합니다. 예를 들어, [dABCDEF]는 모든 16진수에 매치합니다. circumflex와 위에서 대문자형을 지정하여 소문자형을 매칭하는 데에 편리하게 제한을 할 수 있습니다. 예를 들어, 클래스 [^W_]는 언더스코어를 제외한 모든 문자와 숫자에 매치합니다. 

, -, ^(시작 위치), 종료 ]를 제외한 모든 영숫자가 아닌 문자는 문자 클래스에서 특별한 의미를 가지지 않지만, 이스케이프 해도 문제가 발생하지는 않습니다. 

수직 바
수직 바 문자는 선택 패턴을 구별할 때 사용합니다. 예를 들어, 패턴 gilbert|sullivan은 "gilbert"나 "sullivan"에 매치합니다. 어떠한 수의 선택도 사용할 수 있고, 빈 선택도 허용합니다. (빈 문자열에 매칭합니다) 매칭 프로세스는 각 선택을 왼쪽에서 오른쪽으로 시도하며, 가장 먼저 선택한 것을 사용합니다. 서브패턴(아래에서 정의) 안에서 선택을 하면, "성공"은 서브패턴의 선택과 함께 메인 패턴의 나머지 부분도 매치하는 것을 의미합니다. 

내부 옵션 설정
PCRE_CASELESS, PCRE_MULTILINE, PCRE_DOTALL, PCRE_EXTENDED의 설정은 "(?"와 ")" 사이에 펄 옵션 문자 시퀀스로 패턴 안에서 변경할 수 있습니다. 옵션 문자는 다음과 같습니다. 

표 1. 내부 옵션 문자

i PCRE_CASELESS에 해당  
m PCRE_MULTILINE에 해당  
s PCRE_DOTALL에 해당  
i PCRE_EXTENDED에 해당  


예를 들어, (?im)은 대소문자 구별 없는 멀티라인 매칭을 설정합니다. 하이픈과 함께 사용하여 옵션을 해제할 수도 있습니다. 설정과 해제를 동시에 하는 것도 허용합니다. (?im-sx)를 지정하면, PCRE_CASELESS와 PCRE_MULTILINE를 설정하고 PCRE_DOTALL와 PCRE_EXTENDED를 해제합니다. 문자가 하이픈 앞과 뒤에 모두 나타나면, 옵션을 해제합니다. 

옵션이 미치는 위치는 패턴의 어디에서 설정을 했는지에 의존합니다. 모든 서브패턴(아래에서 정의) 밖에서 설정하면, 효과는 옵션을 매칭 시작 지점에서 설정 및 해제한 것과 같습니다. 다음 패턴들은 모두 완전히 동일한 작동을 합니다: 


      (?i)abc
      a(?i)bc
      ab(?i)c
      abc(?i)
     

이들은 PCRE_CASELESS를 설정하여 패턴 abc를 처리하는 것과 동일합니다. 즉, "최고 레벨" 설정은 (서브패턴 안에서 다른 변화를 주지 않는 한) 모든 패턴에 적용합니다. 최고 레벨에서 같은 옵션의 설정이 하나 이상 존재하면, 가장 오른쪽에 나오는 설정을 사용합니다. 

서브패턴 안에서 옵션을 변경하면, 효과가 다릅니다. 이는 펄 5.005에서 작동 변경점입니다. 서브패턴 안에서 옵션 변경은 따라오는 서브패턴의 부분에만 영향을 미칩니다. 그러므로 (a(?i)b)c은 abc와 aBc만을 매치합니다. (PCRE_CASELESS를 사용하지 않는 경우) 이 의미로, 옵션을 패턴의 다른 부분에서 다른 설정으로 할 수 있습니다. 하나의 선택에서 변경한 것은 같은 서브패턴에서 지속적으로 사용합니다. 예를 들면, (a(?i)b|c)는 "ab", "aB", "c", "C"에 매치합니다. "C"는 옵션을 설정하기 전에 나누어진 브랜치에 해당하지만, 이상한 동작일지라도, 처리 시에 옵션 설정의 효율성을 위해서 매치합니다. 

PCRE 전용 옵션 PCRE_UNGREEDY와 PCRE_EXTRA는 U와 X 문자를 사용하여 펄 호환 옵션과 같은 방법으로 변경할 수 있습니다. (?X) 플래그는 특별하기에, 최고 레벨에서라도 다른 기능을 켜기 전에 위치해야만 합니다. 가장 처음에 놓는 편이 좋습니다. 

서브패턴
서브패턴은 괄호로 구분하며, 중첩할 수 있습니다. 패턴의 부분을 서브패턴으로 만드는 것은 두가지 일을 합니다: 

1. 선택 세트를 지역화합니다. 예를 들어, 패턴 cat(aract|erpillar|)는 "cat", "cataract", "caterpillar" 중에 하나에 매치합니다. 괄호가 없으면, "cataract", "erpillar", 또는 빈 문자열에 매치할 것입니다. 

2. It sets up the subpattern as a capturing subpattern (as defined above). When the whole pattern matches, that portion of the subject string that matched the subpattern is passed back to the caller via the ovector argument of pcre_exec(). Opening parentheses are counted from left to right (starting from 1) to obtain the numbers of the capturing subpatterns. 

예를 들어, 문자열 "the red king"이 패턴 the ((read|white) (king|queen)에 매치한다면, "red king", "red", "king" 부분 문자열을 잡아내고, 1, 2, 3의 숫자를 부여합니다. 

The fact that plain parentheses fulfil two functions is not always helpful. There are often times when a grouping subpattern is required without a capturing requirement. If an opening parenthesis is followed by "?:", the subpattern does not do any capturing, and is not counted when computing the number of any subsequent capturing subpatterns. For example, if the string "the white queen" is matched against the pattern the ((?:red|white) (king|queen)) the captured substrings are "white queen" and "queen", and are numbered 1 and 2. The maximum number of captured substrings is 99, and the maximum number of all subpatterns, both capturing and non-capturing, is 200. 

As a convenient shorthand, if any option settings are required at the start of a non-capturing subpattern, the option letters may appear between the "?" and the ":". Thus the two patterns 


      (?i:saturday|sunday)
      (?:(?i)saturday|sunday)
     

match exactly the same set of strings. Because alternative branches are tried from left to right, and options are not reset until the end of the subpattern is reached, an option setting in one branch does affect subsequent branches, so the above patterns match "SUNDAY" as well as "Saturday". 

반복
반복은 다음 항목들에 덧붙이는 수량어로 지정합니다: 


이스케이프할 수 있는 하나의 문자

. 메타 문자

문자 클래스

역참조 (다음 섹션 참고)

서브 패턴 묶음(단정이 아닌 경우 - 아래 참고


일반적인 반복 수량어는 허용하는 매치 수의 최소값과 최대값을 중괄호 안에 쉼표로 구분하여 지정합니다. 수는 65535보다 작아야하며, 처음 수는 두번째 수보다 작거나 같아야만 합니다. 예를 들면: z{2,4}는 "zz", "zzz", "zzzz"에 매치합니다. 닫는 괄호 자체는 특수 문자가 아닙니다. 두번째 수를 생략하고, 쉼표가 존재하면 최대 제한이 없어집니다; 두번째 수와 쉼표를 모두 생략하면, 수량어는 요구하는 매치 수의 정확한 수를 지정합니다. 그러므로, [aeiou]{3,}는 3개 이상의 모음에 매치하지만, d{8}은 8자리 수에만 매치합니다. 수량어를 허용하지 않는 위치에서 중괄호를 여는 것은 수량어 구문으로 매치하지 않고, 일반 문자로 취급합니다. 예를 들어, {,6}는 수량어가 아닌, 4 문자의 일반 문자열입니다. 

수량어 {0}을 허용하며, 이는 이전의 항목과 수량어가 존재하지 않는 표현식으로 작동합니다. 

편의성을 위해서 (그리고 역사적인 호환성을 위해서) 가장 일반적인 세 수량어는 단일 표현을 가지고 있습니다: 

표 2. 단일 문자 수량어

* {0,}과 동일 
+ {1,}과 동일 
? {0,1}과 동일


나중에 책이 없을때 필요할지 몰라 따로 정리해놓았다.

 

.  : 모든 문자와 일치

| : 왼쪽 혹은 오른쪽과 일치

[] : 문자 집합 구성원 중 하나와 일치

[^] : 문자 집합 구성원을 제외하고 일치

- : 범위 정의([A-Z]와 같은 형태)

\ : 다음에 오는 문자를 이스케이프

 

* : 문자가 없는 경우나 하나 이상 연속하는 문자 찾기

*? : 게으른 * 문자

+ : 문자 하나 이상 찾기

+? : 게으른 + 문자

? : 문자가 없거나 하나인 문자 찾기

{n} : 정확히 요소와 n번 일치

{m,n} : 요소와 m번에서 n번 일치

{n,} : 요소와 n번 이상 일치

{n,}? : 게으른 {n,}

 

^ : 문자열의 시작과 일치

\A : 문자열의 시작과 일치

$ : 문자열의 끝과 일치

\Z : 문자열의 끝과 일치

\< : 단어의 시작과 일치

\> : 단어의 끝과 일치

 

 

 

\b : 단어의 경계와 일치

\B : \b와 반대로 일치

 

[\b] : 역스페이스

\c : 제어문자와 일치

\d : 모든 숫자와 일치

\D : \d와 반대

\f : 페이지 넘기기

\n : 줄바꿈

\r : 캐리지리턴

\s : 공백문자와 일치

\t : 탭

\v : 수직탭

\w : 영숫자 문자나 밑줄과 일치

\W : \w와 반대

\x : 16진수 숫자와 일치

\0 : 8진수 숫자와 일치

 

() : 하위표현식 정의

\1 : 첫번째 일치한 하위 표현식, 두번째 일치한 하위표현식은 \2

?= : 전방탐색

?<= : 후방탐색

?! : 부정형 전방탐색

?<! : 부정형 후방탐색

?(backreference)true : 조건지정

?(backreference)true|false : else 표현식 조건지정

 

\E : \L혹은 \U변환을 끝냄

\I : 다음에 오는 글자를 소문자로 변환

\L : \E를 만날때까지 모든 문자를 소문자로 변환

\u : 다음에 오는 글자를 대문자로 변환

\U : \E를 만날때까지 모든 문자를 대문자로 변환

 

(?m) : 다중행 모드



출처 - http://blog.naver.com/techbug/150007346770

by 뭔일이여 2007. 4. 27. 17:13
Java 기반의 Bit Torrent P2P프로그램 Azureus
알아보자...ㅋ
http://sourceforge.net/projects/azureus/
by 뭔일이여 2007. 4. 26. 10:37

# 항목앞에 (*) 는 Incompatible Change(호환되지 않는 변경) 입니다.. 주의요망!!

# 이글을 작성당시 4.1 최신버전은 4.1.10 입니다.

# 이글은 mysql document 중 Upgrading from Version 4.0 to 4.1 을 번역한 겁니다.


- 글자셋 지원이 향상되었다. 서버는 다중 글자셋을 지원한다.

- 4.1 은 테이블명,컬럼명을 UTF8 형식으로 저장한다. standard 7-bit US-ASCII 가 아닌 문자로 된 테이블명, 컬럼명이 있을때는 dump & restore 를 사용하라.

그렇지 않으면(직접 복사,이전한 경우) 테이블을 사용할 수 없을 것이며 table not found 에러가 발생할 것이다. 이 경우에는 4.0 으로 다운그레이드 하면 다시 사용할 수 있다.

- 권한테이블의 password 필드가 길어졌다. mysql_fix_privilege_tables 를 사용하여 수정하라.

- Berkeley DB table handler 의 포멧이 더 길어졌다. 4.0 으로 다운그레이드 해야할 경우 mysqldump 를 사용하여 백업하고 4.0 서버를 시작하기 전에 모든 log.XXXXXXXXXX 파일을 삭제한 후 데이타를 로드하라.

- 커넥션별 타임존을 지원한다. 이름으로 타임존을 사용하려면 time zone 테이블을 생성해야 한다.

- 오래된 DBD-mysql module (Msql-MySQL-modules) 을 사용한다면 새 버전(DBD-mysql 2.xx 이상)으로 업그레이드하라. 업그레이드하지 않으면 몇몇 메소드(DBI->do() 와 같은..)가 에러상태를 정확히 판단하지 못할 것이다.

- --defaults-file=option-file-name 옵션은 옵션파일이 없다면 에러를 낼 것이다.

- 4.0.12 이상의 버전이라면 4.1 의 변화를 미리 적용해 볼 수 있다. --new 옵션을 사용하여 mysqld 를 실행하라. 또한 SET @@new=1 명령으로도 동작시킬수 있으며 SET @@new=0 으로 중단할 수있다.

몇가지 4.1 의 변화가 (업그레이드시) 문제가 될 수 있다고 생각되면 업그레이드하기 전에 --new 옵션을 사용해 미리 적용해 보길 권한다. 옵션파일에 아래와 같이 추가하여 적용해 볼 수 있다.

[mysqld-4.0]
new


[Server Changes]

1. 모든 테이블과 컬럼들이 글자셋을 가진다. 글자셋은 SHOW CREATE TABLE 을 사용해 확인할 수 있으며 mysqldump 에서도 글자셋 설정이 추가되었다.(4.0.6 이상의 버전에서는 이 새로운 형식의 덤프를 이해할 수 있지만 그 이전버전에서는 이해할 수 없다.) 단일글자셋을 사용하는 환경에서는 아무런 영향이 없다.( 즉 이전버전에서는 mysqldump 의 글자셋 설정이 아무 의미가 없다는 뜻..)

2. 4.1에서 직접 지원하는 글자셋을 사용한 4.0 데이타는 그대로 사용이 가능하다. 또한 4.1 에서 DB명, 테이블명, 컬럼명은 기본 글자셋이 무엇이든 상관없이 유니코드(UTF8) 로 저장된다.

(*)3. 4.1.0 ~ 4.1.3 버전에서 InnoDB 테이블에 TIMESTAMP 컬럼을 사용했다면 Dump & Restore 해야한다. 해당 버전의 TIMESTAMP 컬럼의 저장방식이 잘못되었다. 4.0 버전이거나 4.1.4 이후 버전이라면 문제가 없다.

(*)4. 4.1.3 부터 InnoDB 는 latin1 이 아니고 BINARY 가 아닌 문자열의 비교에 글자셋 비교함수를 사용한다. 이것으로 공백문자와 ASCII(32) 보다 작은 코드값의 문자들은 글자셋 내에서 정렬순서에 변화가 생겼다. InnoDB 는 latin1 과 BINARY 문자열에 대해서는 여전히 문자열 끝에 공백을 추가하여 비교하는 방식을 사용한다. 만약 4.1.2 혹은 그 이전 버전에서 latin1 이 아닌 컬럼에 인덱스가 있거나 테이블에 CHAR/VARCHAR/TEXT 등의 BINARY 가 아닌 컬럼에 ASCII(32) 보다 작은 코드값의 문자가 있다면 4.1.3 으로 업그레이드 후 ALTER TABLE 이나 OPTIMIZE TABLE 을 사용하여 인덱스를 재구성하라. 또한 이런 경우 MyISAM 테이블도 재구성하거나 수정하여야 한다.

(*)5. 4.1.0 ~ 4.1.5 의 버전에서 UTF8 형식의 컬럼이나 다른 멀티바이트 글자셋 컬럼에 prefix index 를 사용하였다면 4.1.6 혹은 그 이상 버전으로 업그레이드 하기 위해서는 테이블을 재구성해야 한다.

(*)6. 4.1 이전 버전에서 DB명, 테이블명, 컬럼명 등에 액센트 문자(128 ~225 코드값) 를 사용하였다면 4.1 버전으로 곧장 업그레이드 할 수 없다. (4.1 버전은 메타데이타 저장에 UTF8 을 사용하기 때문에..) RENAME TABLE 을 사용하여 UTF8 에서 지원되는 테이블명,DB명,컬럼명으로 변경하라.

(*)7. CHAR(N) 은 N 개의 글자를 의미한다. 이전 버전에서는 N 바이트를 의미했다. 1바이트 글자셋에서는 문제가 없으나 멀티바이트 글자셋을 사용한다면 문제가 된다.

8. 4.1 에서 frm 파일의 포멧이 변경되었다. 4.0.11 이후의 버전은 새 형식을 사용할 수 있지만 그 이전 버전에서는 사용할 수 없다. 4.1 에서 그 이전 버전으로 테이블을 이전하려면 Dump & Restore 를 사용하라.

9. 4.1.1 이나 그 이상의 버전으로 업그레이드하면 4.0 이나 4.1.0 으로 다운그레이드 하는것은 어렵다.

이전 버전에서는 InnoDB 의 다중 테이블스페이스를 인식하지 못한다.

(*)10. 4.1.3 의 커넥션별 타임존 지원기능에서 타임존 시스템 변수명은 system_time_zone 으로 변경되었다.

11. 윈도우 서버는 --shared-memory 옵션을 사용하여 공유메모리를 사용한 로컬 클라이언트 접속을 지원한다. 하나의 윈도우 머신에서 다수의 서버를 운영한다면 각각의 서버에 --shared-memory-base-name 옵션을 사용하라.

12. 통계 UDF 함수 인터페이스가 조금 변경되었다. 이제 각각의 XXX() 통계함수에 xxx_clear() 함수를 선언해야 한다.


[Client Changes]

mysqldump 에 --opt 와 --quote-names 옵션이 디폴트로 활성화되었다. --skip-opt 와 --skip-quote-names 옵션으로 비활성화 할 수 있다.


[SQL Changes]

(*)1. 4.1.2 부터 SHOW TABLE STATUS 출력내용중 Type 이 Engine 으로 변경되었다.

(TYPE 옵션은 4.x 버전에선 계속 지원되지만 5.1 버전에서는 사라질것이다.)

(*)2. 문자 비교는 SQL 표준을 따른다. 비교전에 문자열 끝공백을 제거하는 대신에 짧은 문자열을 공백을 추가하여 늘리는 방식을 사용한다. 이와 관련된 문제는 'a' > 'a\t' 라는 것이다.(이전 버전에서는 'a' = 'a\t' 이었다.) 만약 ASCII(32) 보다 작은 코드값의 문자로 끝나는 CHAR 나 VARCHAR 컬럼이 있다면 REPAIR TABLE 이나 myisamchk 를 사용하여 수정하라.

3. multiple-table DELETE 를 사용할때 삭제하려는 테이블의 별칭(Alias) 를 사용해야 한다.

DELETE test FROM test AS t1, test2 WHERE ...

Do this:

DELETE t1 FROM test AS t1, test2 WHERE ...

이것은 4.0 버전에서 발생하던 문제를 수정하기 위함이다.

(*)4. TIMESTAMP 는 이제 'YYYY-MM-DD HH:MM:SS' 형식의 문자열로 리턴된다. (4.0.12 부터 --new 옵션이 이와같이 동작하도록 지원한다.)

만약 4.0 의 방식처럼 숫자로 리턴되길 원한다면 +0 를 붙여서 출력하라.

mysql> SELECT ts_col + 0 FROM tbl_name;

TIMESTAMP 컬럼의 길이는 더이상 지원하지 않는다. TIMESTAMP(10) 에서 (10) 은 무시된다.

이것은 SQL 표준 호환성을 위해 필요했다. 차기 버전에서는 하위호환을 가지도록 timestamp 의 길이가 초단위의 일부분을 출력하도록 할것이다.

(*)5. 0xFFDF 와 같은 이진값은 해당값의 문자로 간주된다. 이것은 문자를 이진값으로 입력할때 글자셋과 관련된 문제를 해결한다. 숫자값으로 사용하기 위해서는 CAST() 를 사용하라.

mysql> SELECT CAST(0xFEFF AS UNSIGNED INTEGER) < CAST(0xFF AS UNSIGNED INTEGER);
-> 0

CAST() 를 사용하지 않는다면 해당값의 문자에 대한 비교가 될것이다.

mysql> SELECT 0xFEFF < 0xFF;
-> 1

이진값을 숫자형식에 사용하거나 = 연산에 대해 사용할때도 위와 동일하다.(4.0.13 부터 --new 옵션으로 4.0 서버에서 이러한 동작을 반영해볼 수 있다.)

6. DATE, DATETIME, TIME 값을 다루는 함수를 위해 클라이언트에 리턴되는 값은 임시적인 형식으로 고정되었다. 가령 4.1 버전에서 다음과 같은 값을 리턴한다.

mysql> SELECT CAST('2001-1-1' AS DATETIME);
-> '2001-01-01 00:00:00'

4.0 에서는 결과형식이 다르다.

mysql> SELECT CAST('2001-1-1' AS DATETIME);
-> '2001-01-01'

7. AUTO_INCREMENT 컬럼에 DEFAULT 를 명시할 수 없다.(4.0 에서는 무시되었으나 4.1 에서는 에러를 발생한다.)

8. LIMIT 는 음수를 인자로 받지 않는다. (-1 대신에 큰 정수숫자를 사용하라.)

9. SERIALIZE 는 sql_mode 변수값을 위한 모드값이 아니다. 대신에 SET TRANSACTION ISOLATION LEVEL SERIALIZABLE 를 사용하라. 또한 SERIALIZE 는 --sql-mode 옵션의 유효한 값이 아니며

대신 --transaction-isolation=SERIALIZABLE 를 사용하라.


[C API Changes]

(*)1. 4.1.3 에서 mysql_shutdown() 함수의 인자(SHUTDOWN-level)가 추가되었다. 이전에 사용한 mysql_shutdown(X) 을 mysql_shutdown(X,SHUTDOWN_DEFAULT) 로 수정해야 한다.

2. mysql_real_query() 와 같은 몇몇 API 들이 에러발생시 -1 이 아닌 1 을 리턴한다. 만약 아래와 같은 코드를 사용하였다면 수정해야 한다.

if (mysql_real_query(mysql_object, query, query_length) == -1)
{
printf("Got error");
}

Non-Zero 값을 체크하도록 수정하라.

if (mysql_real_query(mysql_object, query, query_length) != 0)
{
printf("Got error");
}


[Password-Handling Changes]

- 보안을 강화하기 위해 패스워드 해시 방식이 변경되었다. 4.0 이나 그 이전의 라이브러리를 사용한 클라이언트를 사용시에 문제가 발생할 수 있다.(아직 4.1로 업그레이드 하지 않은 클라이언트가 리모트 접속을 시도할때 발생할 수 있다.) 다음 항목은 이 문제 해결에 대한 전략을 제공한다. 이것은 낡은 클라이언트와 보안성의 사이에서 타협안을 제시한다.

1. 클라이언트만 4.1 라이브러리를 사용하도록 업그레이드한다. (몇가지 API 의 리턴값을 제외하고) 어떤 변화도 필요하지 않지만 Server/Client 어느쪽에서도 4.1의 새로운 기능을 사용할 수 없을것이다.

2. 4.1로 업그레이드 후 mysql_fix_privilege_tables 스크립트를 실행하여 password 컬럼의 길이를 수정한다. 그러나 서버 시작시 --old-passwords 옵션을 사용하여 하위호환성을 유지한다. 그러다가 모든 클라이언트가 4.1로 업그레이드 하면 --old-passwords 옵션 사용을 중지할 수 있다. 또한 패스워드를 새 형식에 맞도록 수정할수도 있다.

3. 4.1로 업그레이드 후 mysql_fix_privilege_tables 스크립트를 실행하여 password 컬럼의 길이를 수정한다. 모든 클라이언트가 4.1로 업그레이드 되었다면 --old-passwords 옵션을 사용하지 않고 서버를 실행한다. 대신에 모든 계정에 대해 패스워드를 새 형식에 맞도록 수정한다.

4. Netware 환경에서 4.0 에서 4.1 로 업그레이드 할때 Perl 과 PHP 버전을 업그레이드 하라.

출처 - 데이터베이스 사랑넷

by 뭔일이여 2007. 4. 18. 10:30
by 뭔일이여 2007. 4. 16. 18:58
사용자 삽입 이미지
by 뭔일이여 2007. 4. 7. 12:51
| 1 2 3 |